1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《圆的面积》优质课教案下载
借助学习圆面积的经验,找到S环=π(R2-r2)公式中R2-r2对应的图形,用数形结合的思想进一步理解S环=π(R2-r2)的道理。
将圆环面积的求法纳入到万能公式梯形的面积求法中,用集合圈的方式体会平面图形面积的之间的关系,体会知识之间的互相联系。
教学重点:对S环=π(R+r)(R-r)的公式进行再认识
教学难点:找到S环=π(R2-r2)公式中R2-r2对应的图形
教学过程:
一、复习引入:
教师:我们已经学习过圆环面积的求法(贴圆环图片),谁来说一说圆环的面积都可以怎样求?(学生说圆环的三个公式)教师板书。
教师:这节课我们要对圆环的面积进行再认识,结合你对这三个公式的理解,你认为我们需要对哪个公式进行再认识,为什么?(学生谈自己的想法和理由,教师征求其他同学的意见)
教师:你们为什么不选前两个公式进行再认识。(学生自由说不选这两个公式的理由,教师相机进行小结板书)
当学生说第一个公式时教师小结:根据圆环的特点,只要想出圆环的样子,就能想到S环=πR2-πr2这个公式,看来利用图形理解公式,是一种很好的方法。(板书图形)
学生说第二个公式时教师小结:大家认为第二个公式好理解,是因为根据乘法分配律能够由第一个公式推理出S环=π(R2-r2)这个公式,看来利用推理找相等关系,也是理解公式的好方法。(板书推理)
教师:既然大家都想对S环=π(R+r)(R-r)这个公式进行再认识,你们准备从哪些方面进行再认识呢?(生谈准备从哪些方面进行再认识,预设:这个公式对吗?为什么对?)
教师:大家的想法很好,有了对S环=π(R+r)(R-r)这个公式的好奇和研究方向。如果现在就请你开始研究,有什么困难吗?
预设1:有困难。教师:我们可以借助学习前两个公式的经验,找到一个与这个公式对应的图形,利用数形结合来进行解释;也可以找到这个公式与前两个的公式之间的相等关系,利用推理的方法来进行解释。
预设2:没困难。
二、独立探究:
(一)探究S环=π(R+r)(R-r)的道理
出示学习提示:
1.独立探究。圆环面积为什么可以用π(R +r)(R -r)来计算,尝试从不同的角度进行解释。
2.组内交流。在小组内说清自己解释的方法和发现,选派代表进行汇报。
学生独立探究,组内交流。教师巡视指导,组织汇报。
预设1:将圆环平均分成若干个小梯形,用这些梯形拼成一个近似的平行四边形。找到平行四边形与圆环各部分之间的关系,推导出公式S环=π(R+r)(R-r)。
预设3:将圆环剪一刀,将周长拉平,将圆环转化成梯形,利用梯形和圆环各部分之间的关系,推导出S环=π(R+r)(R-r)。
预设3:利用乘法分配律,找到π(R2-r2)=π(R+r)(R-r)。
教师随着学生的汇报,完善板书,贴图,画等号。(注意引导生生对话,追问怎么想到的这种方法)