1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《有理数的加法法则》优质课教案下载
试验 黑板上画4条数轴 ,规定向东方向为正方向,由学生上黑板来画出各种走法:
(1)若两次都向东走,一共向东走了50米,在数轴上可表示为:
写成算式是:(+20)+(+30)=+50 ,即小明位于原来位置的东方50米处.
(2)若两次都向西走,在数轴上表示为:
即小明位于原来位置的西方50米处,算式就是(-20)+(-30)=-50. (3)若第一次向东走20米,第二次向西走30米,在数轴上表示为:
即小明位于原来位置的西方10米处,算式是(+20)+(-30)=-10. (4)若第一次向西20米,第二次向东30米,在数轴上表示为:
即小明位于原来位置的东方10米处。算式是(-20)+(+30)=+10. 观察算式(1)(2),可归结为:同种符号两个数相加,取相同的符号,并把绝对值相加;
观察算式(3)(4),可归结为:异种符号两个数相加,和的符号与绝对值较大的加数的符号相同,和的绝对值等于较大的绝对值减去较小的绝对值.
再看下面的特殊情形。
(5)第一次向西走30米,第二次向东走30米,即回到原来位置。数轴可以表示为:
算式是(-30)+(+30)=0.
(6)第一次向西走30米,第二次没走,算式是(-30)+0=-30.
二、归纳加法法则
综合以上情形,得有理数加法法则:
(1)号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)为相反数的两个数相加和为零; (4)任何数与零相加仍得这个数.
注意:进行有理数加法运算时,首先要判别这两个加数的符号,是同号?是异号?是否是零?来确定用哪一条法则;同时在运用法则的过程中,一定要牢记“先定符号,后计算绝对值”.
三、巩固练习
1.课本第37页的习题; 2.思考:
(1)两个有理数相加,和一定大于每个加数吗?
(2)若两个有理数的和为正数,那么这两个数可能是什么情形?
(3)两个数相加,其和小于每一个加数,那么这两个数是什么情形? 四、课堂小结
熟练掌握有理数加法法则.实际运用时,牢记“先定符号,后计算绝对值”. 五、作业设计
1.已知 |x+3 | 与 |y+2| 互为相反数,求x+y的值。 2.已知 |a| =3, |b| =4, 求a + b的值。 3.用 |a|, |b| 来表示以下结果: