1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
华东师大2011课标版《平行线的性质》最新教案优质课下载
教学重点:平行线性质和判定综合应用,两条平行的距离,命题等概念.
教学难点:平行线性质和判定灵活运用.
教学方法:引导发现法、探究法、讲练结合法
教具准备:
教学过程:
一、复习引入
1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)
2.平行线的性质有哪些.
3.完成下面填空.
已知:如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.
4.a⊥b,c⊥b,那么a与c的位置关系如何?为什么?
二、进行新课
1.例1 已知:如上图,a∥c,a⊥b,直线b与c垂直吗?为什么?
学生容易判断出直线b与c垂直.鉴于这一点,教师应引导学生思考:
(1)要说明b⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?
(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.
(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?
让学生写出说理过程,师生共同评价三种不同的说理.
2.实践与探究
(1)下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.
∠B∠F∠C∠B与∠F度数之和图(1)图(2) 通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,试加以说明.
(1) (2)
教师投影题目:
学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.
在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: