1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
华东师大2011课标版《用相同的正多边形铺设地面》公开课教案优质课下载
1.联系多边形的内角和与外角和公式,经历探索用正多边形拼地板的道理;
2.结合实践与应用,充分感受数学知识在实际生活中的应用.
重点、难点
1.重点:通过操作使学生发现能拼成一个平面图形的关键.
2.难点:同上.
教学过程
创设情境
通过两个人物对话结合实际生活开始研究能否买到五边形的瓷砖。
使用给定的某种正多边形,它能否拼成一个平面图形,既不留下一丝空白,又不相互重叠?(请同学们拿出预先准备好的若干张正三角形、正方形、正五边形、正六边形、正八边形)
二、探索归纳
通过学生亲自动手拼图,使他们发现能拼成既不留空隙,又不重叠的平面图形的关键是围绕一点拼在一起的几个多边形的内角相加恰好等于360°.
下面我们再通过用计算器计算,看看哪些正多边形能拼成符合以上条件的图形.
每个内角为多少度时能拼成符合以上条件的平面图形呢?
因为60o×6=360o,用6个正三角形瓷砖就可以铺满地面;
90o×4=360o,用4个正方形瓷砖就可以铺满地面.
为什么用正五边形瓷砖不能铺满地面呢?正八边形也不行?
因为360o÷108o,360o÷135o得数都不是整数.
当为正整数时;
即为正整数时,用这样的正多边形就可以铺满地面.
结论:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就拼成一个平面图形.
三、实践应用
例 在正三角形、正方形、正五边形、正六边形、正七边形、正八边形中哪些能铺满地面?为什么?
解 正三角形、正方形、正六边形能铺满地面
因为360o÷60o=6 360o÷90o=4 360o÷120o=3
正五边形、正七边形、正八边形不能铺满地面