1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《图形的旋转》公开课教案优质课下载
【教学重点】旋转的有关概念.
【教学难点】会找出旋转前后图形中的对应点、对应线段、对应角、旋转中心、旋转角.
【教学过程】
一、 情境导入,初步认识
学生观察教材第118页图10.3.1,并回答下面的问题:
(1)图中,哪些零部件作转动?
(2)在这些转动中有哪些共同特征?
(3)钟上的秒针在不停的转动中,其形状、大小、位置是否发生改变?大风车在转动中其形状、大小、位置是否发生改变?彩票大转盘在转动的过程中其形状、大小、位置是否发生变化?
这就是今天我们所研究的课题“图形的旋转”.
二、思考探究,获取新知
1.观察教材第118页图10.3.2,我们可以把它们看成是由一个或几个平面图形,在它所在的平面上转动而产生奇妙画面.
2.演示单摆上小球的运动
(1)单摆上小球的转动由位置P转到P′,它是绕着哪一点?沿着什么方向?转动了多少角度?
(2)单摆上小球转到P与P′中间时,它绕着的点、沿着的方向有没有变化?转动的角度有没有变化?
【归纳结论】 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
3.做一做:大家把准备好的透明纸拿出来.按老师要求完成以下内容:
(1)任意画一个△ABC.
(2)把透明纸覆盖在△ABC上,并在透明纸上画出一个与△ABC重合的三角形.
(3)用一枚图钉将点A处固定.
(4)将透明纸绕着图钉(即点A)转动45°,透明纸上的三角形就旋转了新的位置,标上A′、B′、C′.
我们可以认为△ABC绕着A点旋转45°后到△AB′C′.
同学们考虑一下,可以互相交流,在这样的旋转中,你发现了什么?
归纳总结:在旋转的过程中,(1)点B与点B′,点C和点C′是对应点;(2)线段AB与线段AB′,线段AC与线段AC′,线段BC与线段B′C′是对应线段;(3)∠BAC和∠B′AC′,∠B与B′,∠C与∠C′是对应角.
想一想:△ABC的边AB的中点D的对应点在哪里?