1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《立方根》优质课教案下载
1、了解数的算术平方根的概念,会用根号表示一个数的算术平方根.
2、了解开方运算与乘方运算是逆运算,会利用这个互逆关系求某些非负数的算术平方根.
3、会利用开方运算求某些非负数的平方根.
过程目标
在领悟和运用过程中加深对算术平方根表示方法和意义的理解;
在运用过程中加深对开方和乘方互为逆运算以及对算术平方根和平方根的区别的理解.
情感态度目标
培养学生的符号感及严谨的学习态度.
教学过程
一、创设问题情境
1、什么是平方根?求出36,1.44, EQ ﹨f(81,625) 各数的平方根.
2、一个正数有几个平方根?它们之间的关系如何?
3、负数有平方根吗?为什么?
答:1. 如果一个数的平方等于a,那么这个数叫做a的平方根.
36的平方根是±6,1.44的平方根是±1.2, EQ ﹨f(81,625) 的平方根是 EMBED Equation.3 .
2. 一个正数有两个平方根,它们互为相反数.
3.负数没有平方根,因为任何数的平方都不是负数.
二、算术平方根的概念及其应用
1、算术平方根概念
正数a的正的平方根,叫做a的算术平方根,记作 EQ ﹨r(a) ,读作“根号a”;另一个平方根是它的相反数,即- EQ ﹨r(a) .因此正数a的平方根可以记作± EQ ﹨r(a) ,a称为被开方数,例如 EQ ﹨r(3) 表示3的算术平方根,± EQ ﹨r(3) 表示3的平方根.
特别地,我们规定:0的算术平方根是0.
提问:(1)有了以上的定义和规定之后, EQ ﹨r(a) 是什么数? a是什么数?
让学生讨论、交流,归纳得到结论: EQ ﹨r(a) 是非负数;a是非负数,也就是说,当式子 EQ ﹨r(a) 有意义时,它一定表示一个非负数,即a≥0时它有意义.例: EQ ﹨r(-3) 有意义吗?
(2)算术平方根与平方根有什么联系和区别?
学生自己思考后小组交流,然后抽答.