师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步华东师大版八年级下册矩形的判定下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《矩形的判定》优质课教案下载

通过证明性质定理的逆命题为真命题来证明判定定理。

3、情感、态度与价值观

培养逆向思维的能力。

重点与难点

1、重点:矩形的判定。

2、难点:矩形的判定及性质的综合应用。

一、复习引入

我们已经知道,有一个角是直角的平行四边形是矩形,这是矩形的定义,我们可以依此判定一个四边形是矩形。除此之外,我们能否找到其他的判定矩形的方法呢?

教师提问:我们先来回忆矩形的定义与性质。

学生回答后教师加以总结:

有一个角是直角的平行四边形是矩形。

矩形除了有平行四边形的所有性质外,还具有如下的性质:①两条对角线相等且互相平分;②四个内角都是直角。

教师讲解:我们借鉴上一节的探究方法。要判定一个四边形是矩形,可以从定义入手,一方面证明它是一个平行四边形;另一方面证明这个四边形有一个角是直角。

我们还可以像上节那样,将矩形性质定理的条件与结论相交换,形成一个逆命题,然后证明这个逆命题是真命题,从而得到一个判定定理。

??二、探究新知

?(一)判定定理1的探究与证明

教师提问:矩形的第1条性质:“矩形的两条对角线相等且互相平分”的逆命题是什么?

学生回答后教师加以总结:上述性质定理的逆命题是:两条对角线相等且互相平分的四边形是矩形。

学生动手测量:数学书的对角线是否相等

通过实践,我们由此可以得到判定矩形的一种方法:

对角线相等的平行四边形是矩形,或对角线互相平分且相等的四边形是矩形。

结论的证明很简单。

在平行四边形ABCD中,对角线AC与对角线BD相等,我们可以证明四边形ABCD是矩形。教师讲解该题的证明过程并板书。

??教师讲解:这一判定方法在生活中有许多用处,木工师傅在制作门框或其他矩形的物体时,常用测量对角线的方法来检验产品是否符合要求。

?(二)例题讲解(课本104页例4)

教材