1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《23.4中位线》集体备课教案优质课下载
分析教学重点三角形中位线定理教学难点三角形中位线定理的形成和应用教法
学法启发诱导,合作交流教具学具PPT 三角板教
学
过
程集体备课(共案)二次备课修正(个案)
年 月 日
创设情境、激趣导入
在§23.3中,我们曾解决过如下的问题:
如图23.4.1,△ABC中,DE∥BC,则△ADE∽△ABC。
由此可以进一步推知,当点D是AB的中点时,点E也是AC的中点。
现在换一个角度考虑,
EMBED Word.Picture.8
如果点D、E原来就是AB与AC的中点,那么是否可以推出DE∥BC呢?DE与BC之间存在什么样的数量关系呢?
二、提出问题、探索新知
1、猜想
从画出的图形看,可以猜想: DE∥BC,且DE= BC.
EMBED Word.Picture.8
2、证明:如图24.4.2,△ABC中,点D、E分别是AB与AC的中点,
∴ .
∵ ∠A=∠A,
∴ △ADE∽△ABC(如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似),
∴ ∠ADE=∠ABC, (相似三角形的对应角相等,对应边成比例),
∴ DE∥BC且
思考:本题还有其它的解法吗?
已知: 如图所示,在△ABC中,AD=DB,AE=EC。