师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步华东师大版九年级上册仰角、俯角问题下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

华东师大2011课标版《仰角、俯角问题》教案优质课下载

1、问题引入:

某探险者某天到达如图所示的点A 处时,他准备

估算出离他的目的地,海拔为3 500 m的山峰顶

点B处的水平距离.他能想出一个可行的办法吗?

通过这节课的学习,相信你也行.

2、探究新知:

仰角、俯角概念:如图,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.

3、典例精析:

例4、热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m,这栋高楼有多高(结果精确到0.1m)?

三、独立练习:

1、建筑物BC上有一旗杆AB,从与BC相距 40m的D处观察旗杆顶部A的仰角为60°,观察旗杆底部B的仰角为45°,求旗杆的高度。

四、本堂小结:

1、利用解直角三角形的知识解决实际问题的一般过程是:

(1)、将实际问题抽象为数学问题; (画出平面图形,转化为解直角三角形的问题)

(2)、根据条件的特点,适当选用锐角三角函数 等去解直角三角形;

(3)、得到数学问题的答案;

(4)、得到实际问题的答案。

2、仰角、俯角问题的常见基本模型:

五、解决问题:

某探险者某天到达如图所示的点A 处时,他准备

估算出离他的目的地,海拔为3 500 m的山峰顶点

B处的水平距离.他能想出一个可行的办法吗?

通过这节课的学习,相信你也行.

六、本堂小测:

1、如图1,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=_________米.

教材