1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《小结》公开课教案优质课下载
二.解决问题
1.发现和证明圆周角定理;
2.会用圆周角定理及推论解决问题.
教学重点:圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.
教学难点:发现并证明圆周角定理.
教学过程:
一.创设情景
如图是一个圆柱形的海洋馆,?在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗⌒AB观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O的位置,同学乙站在正对着下班窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗?
二、认识圆周角.
1.观察∠ACB、∠ADB、∠AEB,这样的角有什么特点?
2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.)
3.辩一辩,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解.
4.圆周角与圆心角的联系和区别是什么?
三、探究圆周角的性质.
1.在下图中,同弧⌒AB所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想.?同弧⌒AB所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你有什么发现呢?大胆说出你的猜出想.
2.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示,?验证学生的发现.
四、证明圆周角定理及推论.
1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况?
2.学生自己画出同一条弧的圆心角和圆周角,?将他们画的图归纳起来,?共有三种情况:①圆心在圆周角的一边上;?②圆心在圆周角的内部;?③圆心在圆周角的外部.如下图
3.问题:在第一种情况中,如何证明上面探究中所发现的结论呢?另外两种情况如何证明呢?
4.怎样利用有上结论证明我们的第一个猜想:圆弧所对的圆周角相等?(利用圆弧所对的圆心角相等)
5.以上结论同圆改成等圆,同弧改成等弧结论还成立吗?为什么?
6.总结出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
7.将上面定理中的“同弧或等弧”改成“同弦或等弦”,结论还成立吗?