1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级下册(2014年8月第1版)《复习》集体备课教案优质课下载
标知 识
和
能 力掌握勾股定理、相似三角形判定与性质,正弦、余弦、正切概念;能正确地用siaA、cosA、tanA表示直角三角形中两边的比,会用垂径定理。过 程
和
方 法逐步培养学生观察、比较、分析、转化、构造的思维能力。
情 感
态 度
价值观提高学生对几何图形美的认识。教学重点正弦,余弦,正切概念及构造转化思想教学难点构造与转化教学准备教师多媒体课件,学案学生“整理归纳质检第23题,至少四种方法、质检卷、学习用具”课 堂 教 学 程 序 设 计设计意图一.回顾试题
(2017泉州质检第23题)如图,在矩形ABCD中,对角线AC、
BD相交于点O,E是边AD的中点,且AC EMBED Equation.3 ,DC=1.
(1)求证:AB=DE;
(2)求tan∠EBD的值.
二.展示(2)各种解法
解法一:过点E作EF⊥BD于点F,勾股定理
求AD=2,则DE=1利用△BDE面积相等,
求出 ,勾股定理求出 ,
,即可求出 。
解法二:过点D作DF⊥BE延长线于点F,
与法一同理利用△BDE面积相等,求出
DF,勾股定理求出 即可求出
的值。
解法三:连接CE交BD于点F,易证△BCE是等腰直角三角形
∠BEF=90°,勾股定理求出CE,△DEF∽△BCF可求出EF,
即可求出 的值。
解法四:利用和角公式