1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
学生的知识技能基础:
学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,通过本节课的复习掌握分解因式的方法和步骤,灵活运用。
学生活动经验基础:
在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.
在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,灵活运用解决具体问题。
1.知识与技能:
(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;
(2)提高学生因式分解的基本运算技能;
(3)能熟练地综合运用几种因式分解方法.
2.过程与方法:
(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;
(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.
3.情感与态度:
通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力。
知识回顾
(一)分解因式的定义
把一个多项式化成几个整式的积的形式,叫做多项式的分解因式。也叫做因式分解。
即:一个多项式 →几个整式的积
注:必须分解到每个多项式因式不能再分解为止
(二)分解因式的方法
1.提公因式法:
如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式。这种分解因式的方法叫做提公因式法。
即: ma + mb + mc = m(a+b+c)例题:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2 ②p(y-x)-q(x-y)
③ (x-y)2-y(y-x)2
先引导学生观察,准确找出公因式。小组合作完成。最后大屏幕给出正确答案
2.运用公式法:
运用公式法中主要使用的公式有如下几个:
① a2-b2=(a+b)(a-b) [ 平方差公式 ]
② a2 +2ab+ b2 =(a+b)2 [ 完全平方公式 ]
a2 -2ab+ b2 =(a-b)2 [ 完全平方公式 ]
先复习两个公式的特征,然后进行练习
①x2-4y2 ② 9x2-6x+1
3.十字相乘法:
公式:x2+(a+b)x+ab=(x+a)(x+b)
(三)分解因式的步骤?
(四)达标应用
关于教学过程的更多环节详情请下载后观看
1 本节课的教学设计借助于学生已有的整式乘法运算的基础,给学生留有充分探索与交流的时间和空间,让他们经历从整式乘法到分解因式的转换过程并能用符号合理的表示出分解因式的关系式,同时感受到这种互逆变形的过程和数学知识的整体性。
2 有意识的培养学生逆向思考问题的习惯,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性,提高学习效果、学习兴趣,及思维能力和整体素质