1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2011课标版《1同底数幂的乘法》优质课教案下载
3.情感与态度:感受数学与现实生活的密切联系,增强学生的数学应用意识,养成学会分析问题、解决问题的良好习惯.
二、教学重难点:
1.重点:正确理解同底数幂的乘法法则。
2.难点:正确理解和运用同底数幂的乘法法则。
三、教学准备:
多媒体课件
教学过程设计
本节课设计了七个教学环节:复习回顾、探究新知、巩固落实、应用提高、拓展延伸、课堂小结、布置作业.
第一环节 复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
活动目的:通过此活动,让学生回忆幂与乘法之间关系,即,从而为下一步探索得到同底数幂的乘法法则提供了依据,培养学生知识迁移的能力.
活动的注意事项:通过回忆七年级上册课本中有关乘方的知识,能把幂的形式与同底数幂的乘法之间的联系通过回忆后彻底搞清楚、弄明白.在最初回忆时,或许学生会出现思维上的盲点,教师根据具体情况,可以从最基本的数学形式上进行引导,如,你是怎样知道的?等.
第二环节 探究新知
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论.
活动目的:在很多人的印象中,代数除了繁琐的计算就是空洞的符号,是一门内容枯燥、脱离实际的课程,事实上,代数是一门具有丰富内容并且与现实世界、学生生活、其他科学联系十分紧密的学科,它的符号表示手段,深刻地揭示了存在于一类实际问题中的共性,有助于人们对现实世界的认识.本节课的内容正是体现了这一点,用字母揭示一般规律性的东西,是我们应该引导学生掌握的,这是一种非常简洁的方式.
活动的具体方案:探求新知的过程应留给学生独立思考,在教学时要尽量留给学生更多的时间与空间,让他们充分发挥个人的主体作用.用字母表达式体现一般的规律性,学生不是首次接触,如原来所学的各种几何图形面积公式就是一种体现.在本节课中,让学生从数字入手,首先研究可以写成怎样的乘积形式,呢?如若把指数换为字母,又可以怎样理解?在此基础上,把底数换为分数、负数的形式,进而又换作字母的形式,由学生个人思考,小组合作得到结论,结论共享,使全班在认识上又有大的提高,从而得到一般的规律性结论表达式.由前面的层层铺垫得到结论并非难事,多数同学完全可以理解.字母表达式中“m、n都是正整数”这一限定条件不必过分严格强调,随着今后所学数的范围的扩大,这一条件不起作用.让学生能识别并记忆表达式特征是关键.
第三环节 巩固落实
活动内容:以基本习题为落脚点,让学生学会判别、应用所学字母表达式,以达到巩固新知的作用.
活动目的:教科书例题是落实基本知识的主要习题类型,特别是刚刚接触,还没有消化吸收的新知识,理解不透彻往往会为今后的学习带来麻烦,所以在处理例题时,可设计一连串的问题串,由浅入深地进行剖析、分解,这样的设计帮助学生以表达式为依据,根据表达式特征会对形式变化的习题进行分析,从而找到突破口,实践次数多了,学生自然提高对问题的分析、解决能力,使自己在不知不觉中进步.
活动的注意事项:例题中后两个是难点,(3)题中或许会出现对“一”的不理解,无从下手,此时可与(1)题比较,负数作底数在形式上是加括号的,所以此时的“-”不存在于底数之中,因而底数为x,可以看作是同底数幂相乘,“-”在这里起到的是表示相反数的意义.
第四环节 应用提高
活动内容:1.完成课本“想一想”:等于什么?
2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处.
3.独立处理例2,从实际情境中学会处理问题的方法.