1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2011课标版《平方差公式的认识》新课标教案优质课下载
一、复习引入
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.符号表示:(m+b)(n+a)= mn+ma+bn+ba
两项式乘以两项式,结果可能是两项吗?请你举例说明
活动目的:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式乘以多项式法则,设计这一环节的目的,是在复习上节课知识的基础上,为本节课的学习做好知识准备.
二、探索新知
1.提出问题
计算下列各题
(x+2)(x-2); (2)(1+3a)(1-3a)
(3) (x+5y)(x-5y);(4)(2y+z)(2y-z)
观察以上算式及其运算结果,你有什么发现?
活动目的:在上一环节的基础上,引入形式特殊的多项式乘以多项式,使学生在计算过程中发现规律,体会规律的一般性,提出自己的猜想,并尝试用数学语言进行描述.
2.验证猜想
类比活动一中归纳的规律,学生自己再举一些类似的多项式相乘的情形,并计算验证自己的猜想.
活动目的:在“活动1”中,学生通过计算能够初步感受结果的“平方差”形式,但仅仅这样就总结、得到结论,部分学生难免心存疑惑,因此让学生再次举例验证.学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.这样就让学生经历从特殊到一般的探究结论的过程,从而验证猜想,得到规律.
三、巩固提高
1.判断下面计算是否正确
(1)= ( )
(2)(3x-y)(-3x+y)=9x2-y2 ( )
(3)(m+n)(-m-n)=m2-n2 ( )
活动目的:通过判断题的设计,让学生进一步加深对平方差公式形式的理解.
2.例1 利用平方差公式计算:
(5+6x)(5-6x); (2)(x-2y)(x+2y)
(-m+n)(-m-n)
3.利用平方差公式计算:
(1) (a+2)(a-2); (2)(3a+2b)(3a-2b)