1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2011课标版《完全平方公式的认识》精品教案优质课下载
3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感受数学的内在美.
教学过程设计
本节课设计了七个教学环节:回顾与思考、探索引入、初识完全平方公式、再识完全平方公式、又识完全平方公式、课堂小结、布置作业.
第一环节 回顾与思考
活动内容:复习已学过的平方差公式
1. 由下面的两个图形你能得到哪个公式?
2.平方差公式:(a+b)(a-b)=a2-b2 ;
公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积.
第二环节 探索引入
活动内容:1.观察下列算式及其运算结果,你有什么发现?
(m+3)2=(m+3)(m+3)=m2+3m+3m+9=m2+2×3m+9=m2+6m+9
(2+3x)2=(2+3x)(2+3x)=4+2×3x+2×3x+9x2=4+2×2×3x+9x2=4+12x+9x2
2.再举两例验证你的发现.
3你能用自己的语言叙述这一公式吗?
4.你能用图1-5解释这一公式吗?
活动目的:通过特例的探索,引入完全平方公式,再让学生自己举例加深对公式的体会.而在计算图形的面积时,通过对比这些表示方式可以使学生对于公式有一个直观的认识.同时在古代人们也是通过类似的图形认识了这个公式.通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发.
实际教学效果:活动1学生通过观察比较容易得到:(a+b)2=a2+2ab+b2
活动2让学生举例验证的同时,还可以引导学生通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性.
活动4问题提出后,由于前面平方差公式的学习,学生能够主动地去寻找解决问题的方法,绝大多数学生能够很顺利地想到两种不同的方法,并从中建立了数形结合的意识.从而在学生的自主探索过程中验证了完全平方公式,使学生有了一个直观认识.在整个过程中老师只是在提出问题和引导学生解决问题,学生的自主性得到了充分的体现,课堂气氛平等融洽.
第三环节 初识完全平方公式
活动内容:1. (a-b)2=?你是怎样做的?.
2.你能自己设计一个图形解释这一公式吗?
3.分析完全平方公式的结构特点,并用语言来描述完全平方公式.
结构特点:左边是二项式(两数和(差))的平方;
右边是两数的平方和加上(减去)这两数乘积的两倍.