1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2011课标版《垂直》教案优质课下载
一、情境导入
如图是教室的一幅图片,黑板相邻两边的夹角等于多少度?这样的两条边所在的直线有什么位置关系?
二、合作探究
探究点一:垂线的概念
【类型一】 运用垂线的概念求角度
解析:要求∠AOM的度数,可先求它的余角.由已知∠EON=20°,结合∠BOE=∠NOE,即可求得∠BON.再根据对顶角相等即可求得;要求∠NOC的度数,根据邻补角的定义即可.
解:∵∠BOE=∠NOE,∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∠MOC=∠BON=40°.∵AO⊥BC,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,∴∠NOC=140°,∠AOM=50°.
方法总结:(1)由两条直线互相垂直可以得出这两条直线相交所成的四个角中,每一个角都等于90°;(2)在相交线中求角度,一般要利用垂直、对顶角相等、余角、补角等知识.
变式训练:见《学练优》本课时练习“课后巩固提升”第8题
【类型二】 运用垂线的概念判定两直线垂直
解析:由于OA⊥OC,根据垂直的定义,可知∠AOC=90°,即∠AOB+∠BOC=90°,又∠AOB=∠COD,则∠COD+∠BOC=90°,即∠BOD=90°,再根据垂直的定义,得出OB⊥OD.
解:OB⊥OD,理由如下:因为OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.因为∠AOB=∠COD,所以∠COD+∠BOC=90°,所以∠BOD=90°,所以OB⊥OD.
方法总结:由垂直这一条件可得两条直线相交构成的四个角为直角,反过来,由两条直线相交构成的角为直角,可得这两条直线互相垂直.判断两条直线垂直最基本的方法就是说明这两条直线的夹角等于90°.
变式训练:见《学练优》本课时练习“课堂达标训练”第3题
探究点二:垂线的画法
(1)画直线AB,画射线BC (不写作法,下同);
(2)过点A画直线BC的垂线,垂足为G;过点A画直线AB的垂线,交射线BC于点H.