1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册(2013年11月第1版)《等边三角形的判定》教案优质课下载
4、通过定理的逻辑证明,让学生逐步学会用数学符号语言有条理地表达思维过程,发展学生的推理意识和能力。
教学重点
探索等边三角形的两个判定定理,以及定理“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。”。
教学难点
证明定理“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。”时辅助线的作法。
教学过程
情境导入
观察与思考;
如图,具备什么条件的三角形是等腰三角形?
如图,具备什么条件的三角形是等边三角形?
如图,具备什么条件的等腰三角形是等边三角形呢?
2、探索定理
(1) 探索判定定理:有三个角相等的三角形是等边三角形
(2) 探索判定定理:有一个角为60°的等腰三角形是等边三角形
要分两种情况进行证明。
归纳形成等边三角形的判定定理
探索定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(让学生经历拼摆三角尺的活动,发现结论,同时引导学生意识到,通过实际操作探索出来的结论,还需要给予证明)
[生]用含30°角的直角三角尺摆出了如下两个三角形.
其中,图(1)是等边三角形,因为△ABD≌△ACD,所以AB=AC,又因为Rt△ABD中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.
[生]图(1)中,∠B=∠C=60°,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC是等边三角形.
[师]同学们从不同的角度说明了自己拼成的图(1)是等边三角形.由此你能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?
[生]在直角三角形中,30°角所对直角边是斜边的一半.
[师]我们仅凭实际操作得出的结论还需证明,你能证明它吗?
[生]可以,在图(1)中,我们已经知道它是等边三角形,所以AB=BC=AC.而∠ADB=90°,即AD⊥BC.根据等腰三角形“三线合一”的性质,可得BD=DC= BC.所以BD= AB,即在Rt△ABD中,∠BAD=30°,它所对的边BD是斜边AB的一半.