1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册(2013年11月第1版)《直角三角形全等的判定》最新教案优质课下载
3.让学生领会无处不在的数学之美
【教学重点和难点】
1.重点:“斜边、直角边”定理的掌握.
2.难点:“斜边、直角边”定理的灵活运用.
【教学手段】:剪好的直角三角形硬纸片和展示板若干
【教学方法】观察、比较、合作、交流、探索.
【教学过程】
(一)情景引入
故事:乌龟和兔子关于滑梯的争论。
(二)引入新课
如果两个直角三角形的斜边和一对直角边相等(边边角),这两个三角形是否能全等呢?
(三)探究新知
如图3-43,在△ABC与△A'B'C'中,若AB=A'B',AC=△A'C',∠C=∠C'=Rt∠,这时Rt△ABC与Rt△A'B'C'是否全等?
学生讨论后得出结果:
把Rt△ABC与Rt△A'B'C'拼合在一起(教具演示)如图3-44,因为∠ACB=∠A'C'B'=Rt∠,所以B、C(C')、B'三点在一条直线上,因此,△ABB'是一个等腰三角形,于是利用“SSS”或“AAS”可证三角形全等.
从而引出直角三角形全等判定定理——“HL”定理.
(四)知识形成
1.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).
1)这是直角三角形全等的一个特殊的判定定理,其他判定定理用于任意三角形全等的判定定理.(前提、条件)
2)证明直角三角形全等的方法总结
2.分组小游戏:
图形展示:请同学们将手中的全等的直角三角形两个一组摆出不同的位置关系,贴在展示栏内。看哪组贴的又快又多又漂亮!
EMBED PowerPoint.Slide.8
3.应用
例1已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD,垂足分别为C,D,AD=BC.