师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级下册线段的垂直平分线下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

八年级下册(2013年11月第1版)《线段的垂直平分线》公开课教案优质课下载

在七年级学生已经对线段的垂直平分线有了初步的认识,本节课将进一步深入探索线段垂直平分线的性质和判定。同时,渗透证明一个图形上的每个点都具有某种性质的方法:只需在图形上任取一点作为代表。本节课目标位:

1.证明线段垂直平分线的性质定里和判定定理.

2.经历探索、猜测、证明的过程,进一步发展学生的推理证明能力.丰富对几何图形的认识。

3.通过小组活动,学会与人合作,并能与他人交流思维的过程和结果

教学重点、难点

重点是运用几何符号语言证明垂直平分线的性质定理及其逆命题。难点是垂直平分线的性质定理在实际问题中的运用。

三、教学过程分析

本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:性质探索与证明;第三环节:逆向思维,探索判定;第四环节:巩固应用 ;第五环节:随堂练习;第六环节:课时小结第七环节:课后作业。

第一环节:创设情境,引入新课

教师用多媒体演示:

线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.进一步提问:“你能用公理或学过的定理证明这一结论吗?”

第二环节:性质探索与证明

教师鼓励学生思考,想办法来解决此问题。

通过讨论和思考,引导学生分析并写出已知、求证的内容。

已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.

求证:PA=PB.

分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等.

证明:∵MN⊥AB,

∴∠PCA=∠PCB=90°

∵AC=BC,PC=PC,

∴△PCA≌△PCB(SAS). ;

∴PA=PB(全等三角形的对应边相等).

教师用多媒体完整演示证明过程.

第三环节:逆向思维,探索判定

你能写出上面这个定理的逆命题吗?它是真命题吗? 这个命题不是“如果……那么……”的形式,要写出它的逆命题,需分析原命题的条件和结论,将原命题写成“如果……那么……”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论。

教材