1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
学生对于掌握定理以及定理的证明并不存在多大得困难,这是因为在七年级学习《生活中的轴对称》中学生已经有了一定的基础。
在七年级学生已经对线段的垂直平分线有了初步的认识,本节课将进一步深入探索线段垂直平分线的性质和判定。同时,渗透证明一个图形上的每个点都具有某种性质的方法:只需在图形上任取一点作为代表。本节课目标位:
1.证明线段垂直平分线的性质定里和判定定理.
2.经历探索、猜测、证明的过程,进一步发展学生的推理证明能力.丰富对几何图形的认识。
3.通过小组活动,学会与人合作,并能与他人交流思维的过程和结果
重点是运用几何符号语言证明垂直平分线的性质定理及其逆命题。难点是垂直平分线的性质定理在实际问题中的运用。
本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:性质探索与证明;第三环节:逆向思维,探索判定;第四环节:巩固应用 ;第五环节:随堂练习;第六环节:课时小结第七环节:课后作业。
第一环节:创设情境,引入新课
教师用多媒体演示:
当下流行的跑男节目中,邓超与鹿晗抢礼物环节,将礼物放在哪里公平呢?从而引出线段的垂直平分线
线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.利用此性质就能完成.
进一步提问:“你能用公理或学过的定理证明这一结论吗?”
第二环节:性质探索与证明
教师鼓励学生思考,想办法来解决此问题。
通过讨论和思考,引导学生分析并写出已知、求证的内容。
已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.
求证:PA=PB.
分析:要想证明PA=PB,可以考虑包含这两条线段的两个三角形是否全等.
证明:∵MN⊥AB,
∴∠PCA=∠PCB=90°
∵AC=BC,PC=PC,
∴△PCA≌△PCB(SAS). ;
∴PA=PB(全等三角形的对应边相等).
教师用多媒体完整演示证明过程.
第三环节:逆向思维,探索判定
第四环节:巩固应用
第五环节:随堂练习
第六环节:课堂小结
第七环节:课后作业
关于教学过程的更多环节详情请下载后观看
在这一节中,我们作为老师要善于引导学生从问题出发,根据观察、实验的结果,先得出猜想,然后再进行证明,要求学生掌握证明的基本要求和方法,注意数学压想方法的强化和渗透.