1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册(2013年11月第1版)《角平分线》公开课教案优质课下载
2:探究新知
(1)引导学生证明性质定理
请同学们自己尝试着证明上述结论,然后在全班进行交流.
已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.
求证:PD=PE.
证明:∵∠1=∠2,OP=OP,
∠PDO=∠PEO=90°,
∴△PDO≌△PEO(AAS).
∴PD=PE(全等三角形的对应边相等).
(教师在教学过程中对有困难的学生要给以指导)
我们用公理和已学过的定理证明了我们折纸过程中得出的结论.我们把它叫做角平分线的性质定理。 (用多媒体演示)角平分线上的点到这个角的两边的距离相等.
(2)你能写出这个定理的逆命题吗?
我们在前面学习线段的垂直平分线时,已经历过构造其逆命题的过程,我们可以类比着构造角平分线性质定理的逆命题.
引导学生分析结论后完整地叙述出角平分线性质定理的逆命题:在一个角的内部且到角的两边距离相等的点,在这个角的角平分线上.
它是真命题吗? 你能证明它吗? (由学生自己独立思考完成,在全班讨论交流,对困难学生可个别辅导。注:没有加“在角的内部”时,是假命题.)
证明如下:
已知:在么AOB内部有一点P,且PD上OA,PE⊥OB,D、E为垂足且PD=PE,
求证:点P在么AOB的角平分线上.
证明:PD⊥OA,PE⊥OB,
∴∠PDO=∠ PEO=90°.
在Rt△ODP和Rt△OEP中
OP=OP,PD=PE,∴Rt△ODP ≌ Rt△OEP(HL定理).
∴∠1=∠2(全等三角形对应角相等).
逆命题利用公理和我们已证过的定理证明了,那么我们就可以把这个逆命题叫做原定理的逆定理.我们就把它叫做角平分线的判定定理。
3.巩固练习