1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《角平分线》精品教案优质课下载
一、情境导入
问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.
问题1:怎样修建道路最短?
问题2:往哪条路走更近呢?
二、合作探究
探究点一:角平分线的性质定理
【类型一】 应用角平分线的性质定理证明线段相等
解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EBD,得CF=EB;(2)利用角平分线的性质证明△ADC和△ADE全等得到AC=AE,然后通过线段之间的相互转化进行证明.
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.在Rt△DCF和Rt△DEB中,∵ eq ﹨b﹨lc﹨{(﹨a﹨vs4﹨al﹨co1(BD=DF,,DC=DE,)) ∴Rt△CDF≌Rt△EBD(HL).∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,∵ eq ﹨b﹨lc﹨{(﹨a﹨vs4﹨al﹨co1(CD=DE,,AD=AD,))
∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
方法总结:角平分线的性质是判定线段相等的一个重要依据,在应用时一定要注意是两条“垂线段”相等.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
【类型二】 角平分线的性质定理与三角形面积的综合运用
A.6 B.5 C.4 D.3
解析:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=2,∴S△ABC= eq ﹨f(1,2) ×4×2+ eq ﹨f(1,2) ×AC×2=7,解得AC=3.故选D.
方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题