师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级下册图形的旋转以及旋转的性质下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学生起点分析

学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了相当的图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。

二、教学任务分析

图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段

数学课程标准中图形变换的一个重要组成部分。教材从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“圆”的知识内容做好铺垫。

教学目标

知识与能力:

通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.

过程与方法:

经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.

情感态度价值观:

引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.

重点:

类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.

难点:

探索旋转的性质,特别是,对应点到旋转中心的距离相等.

三、教学过程设计

第一环节 创设情境,引入新知

演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。

向学生展示有关的图片:

(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)

(2)大风车的转动;

(3)飞速转动的电风扇叶片;

(4)汽车上的括水器;

(5)由平面图形转动而产生的奇妙图案。

第二环节 探索新知,形成概念

1.建立旋转的概念

(1) 试一试,请同学们尝试用自己的语言来描述以下旋转.

问题:单摆上小球的转动由位置A转到B,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?

图1:在同一平面内,点A绕着定点O旋转某一角度得到点B;

图2:在同一平面内,线段AB绕着定点O旋转某一角度得到线段CD;

图3:在同一平面内,三角形ABC绕着定点O旋转某一角度得到三角形DEF。

观察了上面图形的运动,引导学生归纳图形旋转的概念;

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

(2)情景问题:①请同学们观察图3,点A,线段AB,∠ABC分别转到了什么位置?

②请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度。

设计意图:点明图形旋转中对应点、对应线段及对应角的概念;让学生及时巩固并理解旋转及其相关概念,并为下面探究旋转的性质作好物质与精神上的准备。

2.应用旋转的概念解决问题

这一环节让学生进行问题的研究与解答,培养应用数学知识的意识及解决数学问题的能力。

(1) 如图,△ABO绕点O旋转得到△CDO,则:

点B的对应点是点_____;

线段OB的对应线段是线段______;

线段AB的对应线段是线段______;

∠A的对应角是______;

∠B的对应角是______;

旋转中心是点______;

旋转的角是 ______ 。

设计意图:

① 及时巩固新知,使每个学生都有收获;

② 感受成功的喜悦,肯定探索活动的意义。

(2) 如图,如果正方形CDEF与正方形ABCD是一边重合的两个正方形,那么正

方形CDEF能否看成是正方形ABCD旋转得到?如果能,请指出旋转中心、旋转方向、旋转角度及对应点。

(3) 如图,香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,它是由其中的一瓣经过几次旋转得到的?旋转角∠AOB多少度?你知道∠COD等于多少度吗?

设计意图:加深对旋转概念的理解,及时巩固新知识,对于第2题要注重引导学生多角度分析解决,第3题求∠AOB的度数学生可以根据五分周角容易得到,而学生在求∠COD的度数时,更多的是凭数学直觉或猜测。由此,可以比较自然地引导学生通过实验操作,利用度量等方法去探究旋转的有关性质。

第三环节 实践操作,再探新知

第四环节 巩固新知,形成技能

第五环节 回顾反思,深化提高

第六环节 分层作业,促进发展

关于教学过程的更多环节详情请下载后观看

四、教学设计反思

本设计力图:以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。

具体设计中突出了以下构想:

(1) 创设情境,引人入胜

首先播放一组生活中熟悉的体现运动变化的画面,激发学生的求知欲,为

新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2) 过程凸现,紧扣重点

旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出

概念形成过程和性质探究过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力,引导学生从运动、变化的角度看问题,向学生渗透辨证唯物主义观点。

(3) 动态显现,化难为易

教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开

了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的获得新知。

(4) 例子展现,多方渗透

为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,

培养学生的发散思维,也增强学生用数学的意识。

教材