师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级下册2. 分式的乘除法下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学生知识状况分析

知识技能基础:

学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。在前面学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基础。

能力基础:

在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。

二、教学任务分析

具体学习任务分析 :本节课的重点是分式乘除法的法则及应用,难点是分子、分母是多项式的分式的乘除法的运算。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分。因此,本课时的教学目标是:

1.类比分数的乘除运算法则,探索分式的乘除运算法则。

2.理解分式的乘除运算法则,会进行简单的分式的乘除法运算

3.通过师生讨论、交流,培养学生合作探究的意识和能力。

三、教学过程分析

第一环节 故事引入

与同学分享鲁班发明锯子的故事。

故事中的鲁班应用了类比的思想,从而发明了锯子,以此引出新课——也应用类比的思想学习新知:类比分数的乘除法计算分式的乘除法。

教学效果:

1.利用学生上课前几分钟是注意力最集中的时候这一自然规律,说出了计算分式的运算的最核心思想:类比思想,类比分数的运算,这样带给学生的好处是非常大的,为接下来的几节课也打了很好的基础,学生不会分式计算的时候就会很快的想到分数的计算,这样将复杂的新探究的知识无形中的转化为了学生最熟悉的最简单的分数计算上,大大的提高了学习的效率。

2.故事引入达到了吸引学生的注意力的目的,学生的学习兴趣高涨,提高了学生学习的积极性。

第二环节 探究新知

(一)类比学习,探索法则。

让学生认真思考课件提供的4个分数的乘除法的例子(2个乘法,2个除法)

复习:分数的乘除法法则(抽一学生口答)

猜一猜:= ; (第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)

类比:得出分式的乘除法法则:

分式的乘除法的法则:

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;

两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.

活动目的:

让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。

教学效果:

通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。

(2)应用法则,学习新知

第一关:分子分母都是单项式

例1 计算

(1) (2)

跟踪练习:

(1) (2)

第二关:分子分母含有多项式

例2.计算:

(1) (2)

跟踪练习:

活动目的:

(通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,并能解决一些与分式有关的简单的实际问题,增强学生代数推理的能力与应用意识。需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简。)

抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。

教学效果:

有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生注意计算步骤。

第三环节 课堂反馈

第四环节 反思总结

第五环节 作业布置

关于教学过程的更多环节详情请下载后观看

四、教学反思

1、学生对于法则的运用不难,但是较差班级的学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。

2、类比的学习方法是学习新知识的好方法。

教材