师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级下册复习题下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、总体说明

本节课主要让学生回顾在学习分式的基本概念与分式的运算及分式方程的求解和运用,熟练掌握分式的运算法则,通过螺旋式上升的认识,让学生逐步熟悉运用分式运算的基本技能,培养学生的代数表达能力,通过本节课的教学使学生对分式和分式方程的运算和求解有更深的认识.

二、学生知识状况分析

学生的技能基础:

学生已经学习了分式及分式的运算、分式方程等有关概念,对分式及其运算和分式方程有了初步的认识,但对技巧性较高的运算题还不熟悉.

学生活动经验基础:

在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论等活动方法,获得了解决实际问题所必须的一些数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.

三、教学任务分析

在本章的学习中,学生已经初步掌握了分式的概念与分式加减乘除法的运算和分式方程的求解,本课时安排让学生对本章内容进行回顾与巩固提高,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的目标是:

知识与技能:

1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.

2.了解分式的基本性质,掌握分式的约分和通分法则.

3.掌握分式的四则运算.

数学能力:

1.提高学生的运算能力,发展学生的合情推理能力;注重学生对分式的理解,提高学生分析问题的能力.

2.结合实际情况,分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握方程的解法,体会解方程中的化归思想.

四、教学过程分析

本节课设计了四个教学环节:回顾——想一想——做一做——课后练习.

第一环节-回顾

【知识网络】

第二环节-想一想

要点一、分式的有关概念及性质

1.分式

一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.其中A叫做分子,B叫做分母.

要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.

2.分式的基本性质

(M为不等于0的整式).

3.最简分式

分子与分母没有公因式的分式叫做最简分式.如果分子、分母中含有公因式,要进行约分化简.

要点二、分式的运算

1.约分

利用分式的基本性质,把一个分式的分子和分母中的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.

2.通分

利用分式的基本性质,使分子和分母同乘以适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.

3.基本运算法则

分式的运算法则与分数的运算法则类似,具体运算法则如下:

(1)加减运算

;同分母的分式相加减,分母不变,把分子相加减.

;异分母的分式相加减,先通分,变为同分母的分式,再加减.

(2)乘法运算 ,其中是整式,.

两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.

(3)除法运算 ,其中是整式,.

两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.

(4)乘方运算

分式的乘方,把分子、分母分别乘方.

4.分式的混合运算顺序

先算乘方,再算乘除,最后加减,有括号先算括号里面的.

要点三、分式方程

1.分式方程的概念

分母中含有未知数的方程叫做分式方程.

2.分式方程的解法

解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.

3.分式方程的增根问题

增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.

要点四、分式方程的应用

列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.

第三环节-做一做

第四环节-课后练习

关于教学过程的更多环节详情请下载后观看

五、教学反思

分式是表示具体情境中数量的模型,它是分数的“代数化”,它的性质、运算与分数的性质、运算完全相似,它是代数运算的基础之一。在教学过程中,注重对分式运算算理的理解是教学要注意的重点,在运算过程中,要注意部分学生将分式的运算与解分式方程混为一谈,不加思索地将分式的运算中的分母去掉,造成运算的不合理,在教学中要注意到发展学生的合情推理能力。

教材