师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版八年级下册平行四边形的判定二下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、教学目标

知识与技能目标:

学生经历了对平行四边形性质探索的过程,掌握了平行四边形对边、对角的性质特征,并能简单应用。

过程与方法目标:

对平行四边形具有了一定的观察分析的能力和合情推理能力,具备了自行得出平行四边形对角线的性质的基础。

情感态度与价值观目标:

1.进一步掌握平行四边形对角线互相平分的性质,学会应用平行四边形的性质;

2.在应用中进一步发展学生合情推理能力,增强逻辑推理能力,掌握说理的基本方法。

3.通过解决问题,探究并归纳:“平行线间的距离处处相等”这一性质。

二、教学重难点

教学重点:

平行四边形性质的应用

教学难点:

发展合情推理及逻辑推理能力

三、教学方法

启发诱导法,探索分析法

四、教学过程

第一环节 回顾思考,引入新课

活动内容:

以问题串形式回顾平行四边形的概念和平行四这形的性质。温故知新。

1.平行四边形都有哪些性质?

2.回顾思考

选择题

(1)平行四边形ABCD中,∠A比∠B大20°,则∠C的度数为( )

A.60° B.80° C.100° D.120°

(2)平行四边形ABCD的周长为40cm,三角形ABC的周长为25cm, 则对角线AC长为( )

A.5cm B.15cm C.6cm D.16cm

(3)平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有

参考答案:

1. C. 2. A. 3.4对.

活动目的:

1.通过(1)~(3)的问题串,反馈学生对平行四边形的对边、对角性质的理解和简单应用,同时总结结论:平行四边形对角线互相平分。

活动效果:

能真实客观反馈学生对上节“平行四边形性质”的情况,并有针对性的在本节补救强化。

第二环节 探索发现,灵活运用

活动内容:

一、 探索问题1

在上节课的做一做中,我们发现平行四边形除了边、角有特殊的关系以外,对角线还有怎样的特殊关系呢?

A.(学生思考、交流)得出:平行四边形的对角线互相平分。

B.请尝试证明这一结论

已知:如图6-4,平行四边形ABCD的对角线AC、BD相交于点O.

求证:OA=OC,OB=OD.

证明: ∵四边形ABCD是平行四边形

∴ AB=CD AB//DC

∴ ∠BAO=∠DCO ∠ABO=∠CDO

∴ △AOB≌△COD

∴ OA=OC,OB=OD.

你还有其他的证明方法吗,与同伴交流。

活动目的:

通过对上节课做一做的回顾,得出平行四边形对角线互相平分的性质,再通过严格的说理证明,深化对知识的理解。

活动效果及注意:

因为有上节课的基础,学生对于定理的证明已具备一定的基础,但是在证明完定理后应该给学生强调:定理的证明只是让学生进一步理解定理,而在定理的运用时则没必要这么麻烦,直接由平行四边形可得出其对角线互相平分。

二、[练一练]

活动内容

探索问题2

例1.如图6-5,在平行四边形ABCD中,点O是对角线AC、BD的交点,过点O的直线分别与AD、BC交于点E、F.

求证:OE=OF.

A.议论交流

B.师生共析归纳

解:∵四边形ABCD是平行四边形

∴ AD=CB AD//BC OA=OC

∴ ∠DAC=∠ACB

又∵∠AOE=∠COF

∴△AOE≌△COF

∴OE=OF

探索问题2

如图6-6, 平行四边形ABCD的对角线AC、BD相交于点O, ∠ADB=900,OA=6,0B=3.求AD和AC的长度.

解: ∵四边形ABCD是平行四边形

∴OA=OC=6 OB=OD=3

∴AC=12

又∵∠ADB=900

∴在Rt△ADO中,根据勾股定理得

OA2=0D2+AD2

∴AD=3√3

活动目的:

通过练一练的两个问题的训练,进一步巩固平行四边形的性质,并学会应用。

第三环节 观察分析,理性升华

第四环节 巩固反馈,总结提高

第五环节 评价反思,目标回顾

关于教学过程的更多环节详情请下载后观看

五、教学反思

把一件平凡的事情做好,就不平凡,把一件简单的事情做好就不简单。

教材