师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版九年级上册*5 相似三角形判定定理的证明下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学情分析

“相似三角形判定定理的证明”是“探索三角形相似的条件”之后的一个学习内容,学生已经学习了相似三角形的有关知识,对相似三角形已有一定的认识,并且在前一节课的学习中,以充分经历了猜想,动手操作,得出结论的过程。本节主要进行相似三角形判定定理的证明,证明过程中需添加辅助线,对学生来说具有挑战性,需要通过已有的知识储备,相似三角形的定义以及构造三角形全等的方法完成证明过程。

二、教学任务分析

本节共一个课时,本节是从证明相似三角形判定定理1、两角分别相等的两个三角形相似入手,使学生进一步通过推理证明上节课所得结论命题1的正确性,从而学会证明的方法,为后续证明判定定理2,3打下基础。

三、教学目标

知识与技能:

(1)、理解相似三角形的概念,能正确地找出相似三角形的对应边和对应边角.

(2)、掌握相似三角形判定定理的“预备定理”.

过程与方法:

(1)、通过探索相似三角形判定定理的“预备定理”的过程,培养学生的动手操作能力,观察、分析、猜想和归纳能力,渗透类比、转化的数学思想方法.

(2)、利用相似三角形的判定定理的“预备定理”进行有关判断及计算,训练学生的灵活运用能力,提高表达能力和逻辑推理能力.

情感与态度:

(1)、通过实物演示和电化教学手段,把抽象问题直观化,激发学生学习的求知欲,感悟数学知识的奇妙无穷.

(2)、通过主动探究、合作交流,在学习活动中体验获得成功的喜悦.

[教学重点]

相似三角形判定定理的预备定理的探索

[教学难点]

相似三角形判定定理的预备定理的有关证明

四、教学过程分析

本节课设计了 五个教学环节:第一环节:复习回顾,导入课题;第二环节:动手操作、探求新知;第三环节:推理证明;第四环节:学以致用;第五环节:课堂小结,布置作业。

第一环节:复习回顾,导入课题

内容:在上节课中,我们通过类比两个三角形全等的条件,寻找并探究判定两个三角形相似的条件,我们得出的结论是怎样的?您能证明它们一定成立吗?

目的:通过学生回顾复习已得结论入手,激发学生学习兴趣。

效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣。

第二环节:动手操作,推理证明

内容:命题1、两角分别相等的两个三角形相似。如何对文字命题进行证明?与同伴进行交流.

目的:通过学生回顾证明文字命题的步骤入手,引导学生进行画图,写出已知,求证。

第一步:引导学生根据文字命题画图,

第二步:根据图形和文字命题写出已知,求证。

已知:如图,在△ABC和△A’B’C’中,∠A=∠A’,∠B=∠B’。

求证: △ABC∽△A’B’C’。

第三步:写出证明过程。(分析现在能说明两个三角形相似的方法只有相似三角形的定义,我们可以利用这一线索进行探索,已知两角对应相等,根据三角形内角和定理可以推出第三个角也相等,从而可得三角对应相等,下一步,我们只要再证明三边对应成比例即可。根据平行线分线段成比例的推论,我们可以在△ABC内部或外部构造平行线,从而构造出与△A’B’C’全等的三角形。)

教师可以以填空的形式进行引导。

证明:在△ABC的边AB(或延长线)上截取AD=A’B’,过点D作BC的平行线,交AC于点E,则∠ADE=∠B,

∠AED=∠C,

________(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。

过点D作AC的平行线,交BC于点F,则

__________(平行于三角形一边的直线与其他两边相交,截得的对应线段成比例)。

∴____________

∵DE∥BC,DF∥AC

∴四边形DFCE是平行四边形。

∴DE=CF

∴____________

∴____________

而∠ADE=∠B, ∠DAE=∠BAC, ∠AED=∠C,

∴____________

∵∠A=∠A’, ∠ADE=∠B’, AD=A’B’,

∴△____≌△____

∴△ABC∽△A’B’C’.

通过证明,我们可以得到命题1是一个真命题,从而得出相似三角形判定定理1:两角分别相等的两个三角形相似。现在,我们已经有两种判定三角形相似的方法。

第三环节:动手实践,推理证明

第四环节:学以致用

第五环节:课堂小结

关于教学过程的更多环节详情请下载后观看

五、学法指导

本节课为九年级第三章第五节内容,要求学生将已有的全等三角形的判定方法,相似三角形的定义,平行线分线段成比例等知识储备灵活运用,经历从特殊到一般,从猜想-实践-证明的过程,感受图形世界的丰富多彩,体会数学类比的思想方法,并学会选择最优方法进行问题的解决。

教材