1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
1、知识目标:
(1)了解图形的位似概念,会判断简单的位似图形和位似中心。
(2)理解位似图形的性质,掌握以坐标原点为位似中心的位似变换的性质。
2、能力目标:
(1)能利用位似将一个图形放大或缩小,解决一些简单的实际问题。
(2)培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。
(3)发展学生的合情推理能力和初步的逻辑推理能力。
3、情感目标:
(1)通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。
(2)进一步体验合作互助、解决难题的情感,感受数学创造的乐趣,增进学好数学的信心。
教学重点:
图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。
教学难点:
在直角坐标系中,以原点为位似中心的位似变换的性质涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,不容易被理解,是本节教学的难点。
一.问题导入
九年级(1)班的同学们准备召开一次班会,他们想把下面的图样放大,使放大前后对应线段的比为1︰2,然后制成彩纸活跃气氛,请你帮助他们找到放大图样的方法。
二.探究新知
1观察思考:以下图形有何特点?
2.观察方格纸中的两个三角形,你有何发现?
(1)概念:如果两个相似多边形每组对应点所在的直线都经过同一个点O,且每组对应点与O 点的距离之比都等于一个定值k,例如OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心。
3.下列相似图形是否是位似图形?如果是请指出位似中心,如果不是请说明理由。
(2)性质:位似多边形上任意一对对应点到位似中心的距离之比k等于___________。
巩固练习
1.如图:五边形ABCDE与五边形A'B'C'D'E'是位似图形。O为位似中心,
若OD:O'D'=1:2,则A'B':AB的值为______.
2.如图ΔABC与ΔA'B'C'为位似图形,点O是它们的位似中心,位似比是1:2,已知ΔABC的面积是3,那么ΔA'B'C'的面积是___________。
应用判断:下面每组图形是位似图形吗?若是,观察各组图中位似中心的位置有何不同?
动手实践
达标检测
关于教学过程的更多环节详情请下载后观看
1、注重应用价值,培养学习兴趣
图形的位似是相似形的延伸和深化。位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形。从教材编排的一些素材看,不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值。因此,本节教材对形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,具有积极促进的作用。
2、注重面向全体,培养探究精神
新课标的理念,数学教育要面向全体学生,人人都能获得必需的数学。图形的位似,作为新增的内容,以其丰富的社会背景为素材展示给我们,使我们感受到数学创造的乐趣,但它对后续学习的知识联系不是很大,所以我认为,本节课的教学内容应以教材的编排为准,概念、性质、应用等让学生容易接受就好,水到渠成,不必要拓展和深化,按教材编排,“4.6图形的位似”为1课时完成。
力求呈现“问题情境――建立数学概念――解释、应用 与拓展”的模式。结合本节课内容和学生的实际水平,可采用“观察——验证——推理和交流”的教学方法,培养学生主动探求知识的精神和思维的条理性。
3、注重学习过程,培养良好习惯
叶圣陶说“教是为了不教”,也就是我们传授给学生的不只是知识内容,更重要的是指导学生一些数学的学习方法。在学习图形的位似概念过程中,让学生用类比的方法认识事物总是互相联系的,温故而知新。而通过“位似图形的性质”的探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳。在分析理解位似图形性质时,加强师生的双边活动,提高学生分析问题、解决问题的能力。通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯。