1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册(2014年6月第1版)《一元二次方程的根的判别式》新课标教案优质课下载
二、教学任务分析
公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。
其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。
为此,本节课的教学目标是:
①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.
③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。
④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力
三、教学过程分析
本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;回忆巩固
活动内容:
①用配方法解下列方程:(1)2x2+3=7x (2)3x2+2x+1=0
全班同学在练习本上运算,可找位同学上黑板演算
②由学生总结用配方法解方程的一般方法:
第一题: 2x2+3=7x
解:将方程化成一般形式: 2x2-7x +3=0
两边都除以一次项系数:2 EMBED Equation.3 EMBED Equation.3
配方:加上再减去一次项系数一半的平方 EMBED Equation.3
即: EMBED Equation.3
EMBED Equation.3
两边开平方取“±” 得: EMBED Equation.3
EMBED Equation.3
写出方程的根 ∴ x1=3 , x2= EMBED Equation.3
第二题: 3x2+2x+1=0