1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
1.分析具体问题中的数量关系,列出一元二次方程;
2.运用方程来解决实际问题的一般步骤.
知识与技能
1.建立方程模型来解决实际问题.
2.总结并运用方程来解决实际问题的一般步骤.
过程与方法
1.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤.
2.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.
情感态度与价值观
通过创设现实情境,使学生真切感受到数学的工具作用和人文价值,体验探索之后成功的喜悦,强化了学生的数学意识,优化了学生的思维品质.
重点:
用一元二次方程刻画现实问题——市场营销.
难点:
理解题意,找出相等关系.
[师]数学在实际生活中应用广泛,而方程又是描述丰富多彩的现实世界数量关系的最重要的语言,所以我们必须广泛了解现代社会中日常生活、生产实践、经济活动的有关常识,并学会用数学中方程的思想去分析和解决一些实际问题.
[师]假如你是新华商场的经理,现在这个商场要销售某种冰箱,经市场调查,发现有如下问题,那么你该如何处理呢?
[例题]新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台,而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?
[师]同学们来分组讨论讨论,注意:要理清进价、销售价、利润之间的关系:
[生甲]进价、销售价和利润之间的关系为
利润=销售价-进价.
因为每台冰箱的进价为2500元,销售价为2900元,所以每台冰箱的利润为400元.在这种情况下,每天能售出8台,这时每天的总利润就为3200元.
如果每台冰箱的销售价降低50元时,可
多售出4台,即
当销售价为2850元时,每天售出冰箱(8+4)12台,这时每台冰箱的利润为350元,则每天的总利润为350×12元.
当销售价为2800元时,每天售出冰箱(8+4×2)16台,这时每台冰箱的利润为300元,则每天的总利润为300×16元.
……
依次类推:
关于教学过程的更多环节详情请下载后观看
本节课我们主要探讨了市场营销类问题的解决方法,即建立方程模型,进一步体会到方程是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识以及解一元二次方程的技能.