师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版九年级上册用公式法求解一元二次方程下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学生知识状况分析

学生的知识技能基础:

学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.

学生活动经验基础:

学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.

二、教学任务分析

公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。

其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。

为此,本节课的教学目标是

①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。

②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.

③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。

④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力

三、教学过程分析

本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。

第一环节;回忆巩固

活动内容:

①用配方法解下列方程:(1)2x2+3=7x (2)3x2+2x+1=0

全班同学在练习本上运算,可找位同学上黑板演算

②由学生总结用配方法解方程的一般方法:

第一题: 2x2+3=7x

解:将方程化成一般形式: 2x2-7x +3=0

两边都除以一次项系数:2

配方:加上再减去一次项系数一半的平方

即:

两边开平方取“±” 得:

写出方程的根 ∴ x1=3 , x2=1/2

第二题: 3x2+2x+1=0

解:两边都除以一次项系数:3

配方:加上再减去一次项系数一半的平方

即:

∴原方程无解

活动目的:

(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。

(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。

(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.

活动的实际效果:

通过对旧知识的回顾,学生再次经历了配方法解方程的全过程,由于是旧知识,学生容易做出正确答案,并获得成功的喜悦,调动了学生的学习热情,唤醒学生的思维,为后面的探索奠定了良好的基础。

第二环节 探究新知

(1)活动1:自主推导求根公式。

提出问题:解一元二次方程:ax2+bx+c=0(a≠0)

学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.

解:两边都除以一次项系数:a

问:为什么可以两边都除以一次项系数:a

答:因为a≠0

配方:加上再减去一次项系数一半的平方

即:

问:现在可以两边开平方吗?

答:不可以,因为不能保证

问:什么情况下

学生讨论后回答:

答: ∵ a≠0

∴ 4a2>0

要使

只要 b2-4ac≥0即可

∴当b2-4ac≥0时,两边开平方取“±” 得:

问:如果b2-4ac<0时,会出现什么问题?

答:方程无解

如果b2-4ac=0呢?答;方程有两个相等的实数根。

活动目的:

学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。

活动的实际效果:

学生的主要问题通常出现在这样的几个地方:

(1)中运算的符号出现错误和通分出现错误

(2)不能主动意识到只有当b2-4ac≥0时,两边才能开平方

(3)两边开平方,忽略取“±”。

大部分学生需要在教师的帮助下,才能完善公式的推导。

(2)活动2:归纳总结公式法定义和根的判别式。

第三环节:巩固新知

第四环节:收获与感悟

第五环节:布置作业

关于教学过程的更多环节详情请下载后观看

四、教学反思

1、要创造性的使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。

2、要为学生的终身学习奠基

这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.

相关资源

教材