1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
学生的知识技能基础:
学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.
学生活动经验基础:
学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.
公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。
其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。
为此,本节课的教学目标是:
①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.
③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。
④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力
本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;回忆巩固
活动内容:
①用配方法解下列方程:(1)2x2+3=7x (2)3x2+2x+1=0
全班同学在练习本上运算,可找位同学上黑板演算
②由学生总结用配方法解方程的一般方法:
第一题: 2x2+3=7x
解:将方程化成一般形式: 2x2-7x +3=0
两边都除以一次项系数:2
配方:加上再减去一次项系数一半的平方
即:
两边开平方取“±” 得:
写出方程的根 ∴ x1=3 , x2=1/2
第二题: 3x2+2x+1=0
解:两边都除以一次项系数:3
配方:加上再减去一次项系数一半的平方
即:
∵
∴原方程无解
活动目的:
(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。
(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。
(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.
活动的实际效果:
通过对旧知识的回顾,学生再次经历了配方法解方程的全过程,由于是旧知识,学生容易做出正确答案,并获得成功的喜悦,调动了学生的学习热情,唤醒学生的思维,为后面的探索奠定了良好的基础。
第二环节 探究新知
(1)活动1:自主推导求根公式。
提出问题:解一元二次方程:ax2+bx+c=0(a≠0)
学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.
解:两边都除以一次项系数:a
问:为什么可以两边都除以一次项系数:a
答:因为a≠0
配方:加上再减去一次项系数一半的平方
即:
问:现在可以两边开平方吗?
答:不可以,因为不能保证
问:什么情况下
学生讨论后回答:
答: ∵ a≠0
∴ 4a2>0
要使
只要 b2-4ac≥0即可
∴当b2-4ac≥0时,两边开平方取“±” 得:
问:如果b2-4ac<0时,会出现什么问题?
答:方程无解
如果b2-4ac=0呢?答;方程有两个相等的实数根。
活动目的:
学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。
活动的实际效果:
学生的主要问题通常出现在这样的几个地方:
(1)中运算的符号出现错误和通分出现错误
(2)不能主动意识到只有当b2-4ac≥0时,两边才能开平方
(3)两边开平方,忽略取“±”。
大部分学生需要在教师的帮助下,才能完善公式的推导。
(2)活动2:归纳总结公式法定义和根的判别式。
第三环节:巩固新知
第四环节:收获与感悟
第五环节:布置作业
关于教学过程的更多环节详情请下载后观看
1、要创造性的使用教材
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。
2、要为学生的终身学习奠基
这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.