师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版九年级下册梯子的倾斜程度与正切下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学生知识状况分析

在本节课以前,学生学习了直角三角形的边边关系(如勾股定理)、角角关系(直角三角形的两个锐角互余)等知识.对于边角关系,平面几何中在特殊的直角三角形中有所接触,如“在直角三角形中,30°所对的直角边是斜边的一半”等.但还不能从根本上掌握直角三角形的边与角之间的内在联系.

本课时从学生观察比较熟悉的生活工具——梯子的倾斜程度来展开,便于学生在直观感受的基础上进一步探讨更本质的东西,即由直观感受转为定性分析,最终进行定量研究,从而揭示直角三角形边角关系的内在本质.由于学生基于生活经验有一定的直观感受,因此学习本章节内容就有了很好的生活基础,降低了学习难度.但要准确刻画梯子倾斜程度,就需要通过本节课的学习利用直角三角形边与边的关系来判断.

二、教学任务分析

本课是九年级下册第一章第一节《锐角三角函数》的第一课时.先由学生基于生活经验直观感受、判断梯子的倾斜程度,然后通过不易于判断的个例呈现给学生,引导学生进行简单的演算、比较、推理,教师采用教育技术实验的方法,借助几何画板,通过几何直观,帮助学生真正领会到直角三角形中边与角之间确实存在着一定的关系,最终探索出直角三角形中,一个锐角的对边与邻边的比是随锐角的变化而变化的.说明在直角三角形中,用一个锐角的对边与邻边的的比来定义正切是合理的.在问题解决的过程中,要渗透数形结合等数学思想方法,发展学生的几何直观能力和符号感.由于不同学生对问题的理解是不一样的,教师应尊重学生间的差异,不要急于否定学生的答案,而要鼓励学生开展讨论,给学生提供成果展示的机会,培养学生的交流能力及学习数学的自信心.

本节课教学目标如下:

知识与技能:

1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.

2.能够用tanA表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度(坡比)等.

3.能够根据直角三角形的边角关系,用正切进行简单的计算.

过程与方法:

1.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题.

2.体会解决问题的策略的多样性,发展学生的几何直观能力和符号感,发展学生观察、分析、发现问题的能力.

情感态度与价值观:

1.通过本节课程的学习,促使学生更加热爱生活,理解数学源于生活,又为生活服务.

2.进一步锻炼学生用数学的观点来解释身边的事物,形成良好的数学思维习惯和思维品质.

教学重点:理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系..

教学难点:理解正切的意义,并用它来表示两边的比.

三、教学过程

第一环节 创设问题情境

我们都知道世界著名的建筑——意大利比萨斜塔.但你知道比萨斜塔是如何倾斜的和倾斜角度是多少吗?小明说,只要测得垂直中心线、塔身中心线的长度及塔顶中心点偏离垂直中心线的距离这三个数据中的任意两个,他就可以计算出塔身倾斜角的大小.你想知道小明是如何做的吗?那么,我们一起来学习新知识吧.通过本章的学习,你就会明白小明这样做的道理.

活动目的:让学生初步从实际问题中去体会直角三角形的边角之间存在一定的关系,并通过这个活动,让学生留意身边的数学;初步感受到倾斜程度在生活中的随处可见,并可以用数学模型来描述.

第二环节 探究新知

探究一:生活中的数学问题:你能比较两个梯子哪个更陡吗?自学第2页(1)、(2)

倾斜的物体在生活中随处可见,那我们该如何判断物体的倾斜程度呢?大家都会用“陡峭”或“平缓”来描述.

图1—1和图1—2中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你是如何判断的?

对于图1—2,学生可能难于下手,这时老师可以借助几何画板的动态演示,引导学生比较对边与邻边的比值,借助几何画板直观的验证梯子的倾斜程度,以突破学生认识上的障碍.活动目的:先让学生从图1-1直观感受梯子的倾斜程度,再让学生理性思考该如何寻找方法判断图1-2中梯子的倾斜程度.这样学生会感到知识上的匮乏,从而对数学产生好奇心和求知欲.让他们从实例中体会不同情况下比较梯子的倾斜程度只靠直观感受是不够的,还需要其他方法——用边的比进行比较.因此启发学生得出结论:(1)倾斜角越大,梯子越陡; (2)倾斜角的对边与邻边的比值越大,梯子越陡.

探究二:直角三角形的边与角的关系:自学第2页“想一想”,完成书中问题

如图1-4,小明想通过测量及,算出它们的比,来说明梯子的倾斜程度;而小亮则认为通过测量及 ,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?

(1)和有什么关系?

(2)和有什么关系?

(3)如果改变在梯子上的位置呢? 由此你得出什么结论?

活动目的:通过对前面问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度.这个活动旨在说明,当倾斜角确定时,其对边与邻边之比也随之确定.这一比值只与倾斜角度有关,而与直角三角形的大小无关.

探究三:正切的定义、表示方法直角三角形中,一个锐角一旦确定,它的对边与邻边的比也随之确定.那么这个确定的比我们能不能用一个数学符号来表示呢?数学上,我们把这个确定的比叫做一个锐角的正切.如图1—4,我们把的对边与的邻边的比,叫做的正切(tangent),记作.即对于正切的定义,同学们必须明确以下几点:

中常省略角的符号“∠”.用希腊字母表示角时也可省略如:、等.但用三个字母表示角和用阿拉伯数字表示角时,不能省略角的符号“∠”,要写成或、等;

请同学们思考,梯子的倾斜程度与的值有关吗?

的值越大,梯子越陡

活动目的:通过对直角三角形中边角关系的探索,合理的引出正切的定义;通过对定义的辨析,发展学生的符号感;通过探究梯子的倾斜程度与的值的关系,渗透数形结合的数学思想;进一步体会正切的意义和与现实生活的联系.

第三环节 应用与练习

第四环节 课堂小结

第五环节 布置作业

关于教学过程的更多环节详情请下载后观看

相关资源

教材