1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级下册(2014年7月第1版)《二次函数在几何方面的应用》集体备课教案优质课下载
3.能用二次函数的性质解决拱桥问题。
教学重点:
能应用二次函数的性质解决图形中最大面积问题.
教学难点:
分析实际问题中变量之间的二次函数关系.
教学过程:
一、导入新课
1、写出下列抛物线的开口方向、对称轴和顶点坐标.
(1)y=x2-2x-3; (2)y=-x2-3x+10.
2、如何求出二次函数 y = ax 2 + bx + c 的最小(大)值?
二、讲授新课
例1 写出下列抛物线的最值.
(1)y=x2-4x-5; (2)y=-x2-3x+4.
例2 已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为( )
A.3 B.-1 C.4 D.4或-1
引例:从地面竖直向上抛出一小球,小球的高度 h(单位:m)与小球的运动时间 t(单位:s)之间的关系式是 h= 30t - 5t 2 (0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?
﹨ MERGEFORMAT
﹨ MERGEFORMAT
例2:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?
问题1 矩形面积公式是什么?
问题2 如何用l表示另一边?
问题3 面积S的函数关系式是什么?
例3: 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?
解:(略)
变式1 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?