1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
在本章前,学生已通过探索变量之间的关系、探究一次函数和反比例函数,逐步建立了函数的基础知识,初步积累了研究函数性质的方法及用函数观点处理实际问题的经验.在本章的学习中,学生已研究了二次函数及其图象和性质,并掌握了求二次函数最大(小)值的一些方法,这些知识都为本节课的学习奠定了良好的知识基础.
教学目标
知识目标:
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值.
能力目标:
1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.
2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.
情感态度与价值观:
1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.
2.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.
3.进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.
教学重点
1.经历探究长方形和窗户透光最大面积问题的过程,获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.
2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.
教学难点
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题.
一、复习回顾
求下列二次函数的顶点坐标,并说明y随x的变化情况:
【设计意图】:引导学生复习前面所学过的内容,由于学习本节课所用的基本知识点是求二次函数的最值,因此和同学们一起复习二次函数最值的求法,以及二次函数的增减性,为本节课的学习做好准备.
二、探究应用
1、情境引入
(1) 请用长20米的篱笆设计一个矩形的菜园.
(2)怎样设计才能使矩形菜园的面积最大?
【设计意图】:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路.
例1.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,求围成花圃的最大面积 .
【设计意图】:在上一个问题的基础上对问题情境进行变化,增大难度,同时板书解题过程,让学生明确规范的书写过程.
2、变式探究一:如图,在一个直角三角形的内部画一个矩形ABCD,其中AB和AD分别在两直角边上,AN=40m,AM=30m,
(1).设矩形的一边AB=xm,那么AD边的长度如何表示?
(2).设矩形的面积为ym²,当x取何值时,y的最大值是多少?
变式探究二:在上一个问题中,如果把矩形改为如图所示的位置,其顶点A和点D分别在两直角边上,BC在斜边上.其它条件不变,那么矩形的最大面积是多少?
变式探究三:如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm,
BC=24cm.若在△ABC上截出一矩形零件DEFG,使得EF在BC上,点D、G
分别在边AB、AC上.问矩形DEFG的最大面积是多少?
【设计意图】:通过由学生讨论怎样用直角三角形剪出一个最大面积的矩形入手,由学生动手画出两种方法,和同学一起从问题中抽象出二次函数的模型,并求其最值,同时通过两种情况的分析,训练学生的发散思维能力,关键是教会学生方法,也是这类问题的难点所在,即怎样设未知数,怎样转化为我们熟悉的数学问题.在此基础上对变式三进行探究,进而总结此类题型,得出解决问题的一般方法.
例2.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB边向点B以1cm/秒的速度移动,同时点Q从点B出发沿BC边向点C以2cm/秒的速度移动.如果P、Q两点在分别到达B、C两点后就停止移动,设运动时间为t秒(0
(1)运动开始后第几秒时,△PBQ的面积等于8cm²;
(2)设五边形APQCD的面积为Scm²,写出S与t的函数关系式,t为何值时S最小?求出S的最小值.
【设计意图】:将动点问题引入,使学生进一步增强二次函数的应用意识,提升思维能力.
三、归纳总结
四、巩固练习
五、拓展提升
六、谈谈本节课你的收获
七、布置作业:
关于教学过程的更多环节详情请下载后观看
本节课通过“理解问题—分析问题中的变量和常量以及它们之间的关系—用
数学的方式表示它们之间的关系—做数学求解—检验结果的合理性并给出问题的解答”的教学流程,使学生不仅获得了书本上的知识,而且拓展知识应用,渗透数学思想方法,体现应用与创新意识.新课程给数学带来的变化是更注重学习的过程(包括思维的过程和感受的过程),更强调对数学的体验,以及数学学习的多样化等等,其实也就是更注重学生的数学综合能力的培养.
在课堂教学过程中,注重以学生的自主探究为主,从提出问题到解决问题,说明知识来源于生活,而又服务于生活,体现了理论联系实际的教学原则.从集体讨论——个别发言——总结归纳,符合学生的年龄特征.通过本节学习,学生不但从实际问题中理解数学知识,体会数学的乐趣,而且从能力上、思想上都达到一个新的境界.
通过本节课的教学看到学生在计算上还存在很大问题,在这方面要注意培养学生的准确计算能力,同时还看到学生的潜力很大,作为教师要充分发挥学生的主观能动性,为学生的发展提供足够的时间和空间.