1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
学生已经学习过二次函数的图象和性质,这是单纯从函数知识“形”的层面进行认识,本节课学习二次函数与一元二次方程之间的关系,将从方程知识“数”的层面进一步认识二次函数,也就是用数形结合的数学思想来认识二次函数.
通过数学活动积累学生数形结合方法的运用经验,体会二次函数与一元二次方程之间的联系;理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,利用二次函数图象理解一元二次方程的根的情况,进一步培养学生运用数形结合思想解决问题的能力.
教学目标
知识与技能:
1.理解二次函数y=ax²+bx+c的图象与x轴交点的个数与一元二次方程=0根的个数之间的对应关系;
2.会利用二次函数的图象与x轴交点的横坐标解相应的一元二次方程.
过程与方法:
1.通过观察二次函数y=ax²+bx+c图象与x轴的交点个数,讨论一元二次方程ax²+bx+c=0的根的情况,进一步培养学生的数形结合思想;
2.理解一元二次方程ax²+bx+c=0的根就是二次函数y=ax²+bx+c与x轴交点的横坐标.
情感态度与价值观:
1.经历探索二次函数与一元二次方程的关系的过程,结合数形结合的思想体会二次函数与方程之间的联系;
2.通过探索二次函数与一元二次方程的关系,使学生体会数学的严谨性以及数学结论的确定性.
教学重点
理解二次函数y=ax²+bx+c的图象与x轴交点的个数与一元二次方程ax²+bx+c=0的根的个数之间的关系.
教学难点
理解一元二次方程ax²+bx+c=0的根就是二次函数y=ax²+bx+c与x轴交点的横坐标.
第一环节:学科交叉,发现问题
我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可以近似地用公式表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.
一个小球从地面被以40m/s的速度竖直向上抛起,小球距离地面的高度h(m)与运动时间t(s)的关系如图所示,观察并思考下列问题:
(1)h和t的关系式是什么?
(2)小球经过多少秒后落地?
你有几种求解方法?与同伴进行交流.
[方法一]看图象可知,8秒落地
[方法二]解方程:
第二环节:建立模型,分析问题
[活动1] 二次函数的图象
如下图所示,与同伴交流并回答问题.
二次函数图象图象与x轴的交点一元二次方程方程的根
与x轴有两个交点:
(-2,0)、(0,0)与x轴有一个交点:(1,0) 与x轴没有交点方程无实数根
第三环节:数形结合,解决问题
[议一议]二次函数y=ax2+bx+c的图象与x轴的交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
二次函数y=ax2+bx+c的图 一元二次方程ax2+bx+c=0
象和x轴交点有三种情况: 的根有三种情况:
有两个交点 有两个不相等的实数根
有一个交点 有两个相等的实数根
没有交点 没有实数根
[例] 观察判断下列图象哪个有可能是抛物线的图象?
解:选D.
第四环节:反思辨析,深入问题
[活动2] 观察函数的图象,完成填空:
(1)抛物线与x轴有 个交点,
它们的横坐标是 ;
(2)当x取交点的横坐标时,函数值是 ;
(3)所以方程的根是 .
(1)抛物线与x轴有 个交点,
它们的横坐标是
(2)当x取交点的横坐标时,函数值是 ;
(3)所以方程的根是 .
[议一议]二次函数y=ax2+bx+c的图象与x轴的交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?
[结]二次函数y=ax2+bx+c与x轴有交点,交点的横坐标为x0,那么当x=x0时,函数的值是0,因此x=x0就是方程ax2+bx+c=0的根.
即,二次函数y=ax2+bx+c与x轴交点的横坐标是方程ax2+bx+c=0的根.
第五环节:回归生活,提升问题
第六环节:拓展延伸,巩固应用
第七环节:归纳小节
关于教学过程的更多环节详情请下载后观看
本课时是课改的新教材提供的内容,表面上显得很简单,实际是初高中衔接中的关键点之一,教师备课时很难吃透教材,讲授时需紧紧扣住数形结合的思想这条主线,培养学生尽早形成对本章知识完整的理解.