1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
北师大2011课标版《*7切线长定理》精品教案优质课下载
(一)、自己学习课文94页,回答大屏幕上的问题:
1、板书定义:从圆外一点可以引圆的两条切线,这一点和切点之间线段的长度叫做圆的切线长
2、剖析定义:
(1)找出中心词,把定义进行缩 句.(线段的长叫做切线长)
(2)定义中的“线段”具有什么特征?
= 1 ﹨ GB3 ① 在圆的切线上; = 2 ﹨ GB3 ② 两个端点一个是切点,一个是圆外已知点.
3、在图形中 辨别:(1)已知:如图1,PC和 EMBED Equation.3 ⊙O相切于点A ,点P到⊙O的切线长可以用哪一条线段的长来表示? (线段PA)
(2)已知:如图2,PA和 PB分别与⊙O相切于点A、B ,点P到⊙O的切线长可以用哪一条线段的长来表示?(线段PA或线段PB)
(3 )如图2,思考:点P到⊙O的切线长可以用三条或三条以上不同的线段的长来表示吗?这样的线段最多可以有几条?为什么?
(4)既然点P到⊙O的切线长可以用两条不同的线段的长 来表示,那么这两条线段之间一定存在着某种关系,是什么关系呢?我们来探索一下,出示探索问题1,从而进入定理教学.
(二)、切线长定理:
1、探索问题1:从⊙O外一点P引⊙O 的两条切线,切点分别为A、B,那么线段PA和PB之间有何关系?
探索步骤:
(1)根据条件画出图形;
(2)度量线段PA和PB的长度;
(3)猜想:线段PA和PB之间的关系;
(4)寻找证明猜想的途径;
(5)在图3中还能得出哪些结论?并把它们归类.
(6)上述各结论中,你想把哪个结论作为切线长的性质?
请说明理由.
3、剖析定理:
(1) 指出定理的题设和结论;
(2)用符号语言表示定理:
∵PA、PB分别是⊙O的切线,点A、B分别为切点,(PA、PB分别与⊙O相切于点A、B)
∴PA=PB,∠APO=∠BPO.