1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《9弧长及扇形的面积》新课标教案优质课下载
教学目标
经历探索弧长计算公式及扇形面积计算公式的过程。
理解弧长计算公式及扇形面积计算公式,并会应用公式解决问题。
教学重难点
教学重点:弧长、扇形面积公式的导出及应用.
教学难点:用公式解决实际问题
教学过程?
一 、情境引入
活动内容:在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的一端拴着一只狗.
(1)这只狗的最大活动区域有多大?这个区域的边缘长是多少?
(2)如果这只狗拴在夹角为120°的墙角 ,那么它的最大活动区域有多大?这个区域的边缘长是多少?
活动目的:让学生观看生活中的弧和扇形,感受数学就在我们的身边,进而出示实际生活中的问题,引发学生的思考分析,激励学生自主的提出要研究的问题——弧长和扇形面积的问题,这样,学生带着问题开始新知识的探索.这样与实际相联系的问题,调动了学生观察思考的积极性,加深他们对几何图形的理解和渴望探索新知识的求知欲.这就是我们本节课要来研究的问题(自然引出课题)
实际教学效果:学生观察图片,阅读生活中的实际问题,自觉的提出弧长和扇形面积的计算,激发学生学习新知识的热情.将学生的注意力牢牢吸引至课堂,使学生认识到数学总是与现实问题密不可分.
二 、探索新知
活动内容:
活动1 ?探索弧长公式
提出以下3问题:
如图,某传送带的一个转动轮的半径为10cm.
1.转动轮转一周,传送带上的物品A被传送多少厘米?
2.转动轮转1°,传送带上的物品A被传送多少厘米?
3.转动轮转n°,传送带上的物品A被传送多少厘米?
活动目的:在这一环节,我从一个生活中的实际问题出发,设计了3个小问题,让同桌的同学讨论分析,得出计算弧长的公式,明确探索一个新的知识要从学过的知识入手,找寻它们的联系,探究规律,得出结论.
实际教学效果:教师通过提出问题,引导学生分析弧长和圆周长之间的关系,推导出n°的圆心角所对的弧长的计算公式.引导学生层层深入,逐步分析,尽量提问学生回答,相互补充,得出结论.学生体会从特殊-一般-特殊的认知过程,会推导出弧长公式.
活动2 探索扇形面积公式
(1)观察与思考:怎样的图形是扇形?