师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步北师大版九年级下册回顾与思考下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、教学目标

(一)教学知识点

1.掌握本章的知识结构图.

2.探索圆及其相关结论.

3.掌握并理解垂径定理.

4.认识圆心角、弧、弦之间相等关系的定理.

5.掌握圆心角和圆周角的关系定理.

(二)能力训练要求

1.通过探索圆及其相关结论的过程,发展学生的数学思考能力.

2.用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力.

3.用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力.

4.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.

(三)情感与价值观要求

通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.

二、教学重点

掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系.对这些内容不仅仅是知道结论,要注重它们的推导过程和运用.

三、教学难点

上面这些内容的推导及应用.

四、教学方法

教师引导学生自己归纳总结法.

五、教具准备

投影片三张:

第一张:(记作A)

第二张:(记作D

第三张:(记作C)

六、教学过程

Ⅰ.回顾本章内容

[师]本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?

[生]首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;

又研究了确定圆的条件;点和圆、直线和圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积.

[师]很好,大家对所学知识掌握得不错.本章的内容可归纳为三大部分,第一部分由圆引出了圆的概念、对称性,圆周角与圆心角的关系,在对称性方面又学习了垂径定理,圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线的作图;第三部分是圆和圆的位置关系.这三部分构成了全章内容,结构如下:(投影片A)

Ⅱ.具体内容巩固

[师]上面我们大致梳理了一下本章内容,现在我们具体地进行回顾.

一、圆的有关概念及性质

[生]圆是平面上到定点的距离等于定长的所有点组成的图形.定点为圆心,定长为半径.

圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具有旋转不变性.

[师]圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?

[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径.把

车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳.如果车轮不是圆形,坐在车上的人会觉得非常颠.

二、垂径定理及其逆定理

[生]垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.

[师]这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分.每个定理都是一个命题,每个命题都有条件和结论.在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等).在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等).从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理.下面我们就用一些具体例子来区别它们.

(投影片B)

1.已知ʘO的半径为10cm,弦AB//CD,AB=16cm,

CD=12cm,则AB、CD间的距离是_________.

2.如图(1)(2012年江西中考题)如图,AC经过ʘO的圆心O,AB与ʘO相切于点B,若∠A=50°,则∠C= _________。

3.(2014年江苏南京)如图,在ʘO中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则ʘO的半径为_________cm.

[师]在上面的两个题中,大家能分析一下应该用垂径定理呢,还是用逆定理呢?

[生]在第1题中,OD、OE都是过圆心的,又OD⊥AB、OE⊥AC,所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,C是弦AB的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理.

三、圆心角、弧、弦之间关系定理

四、圆心角与圆周角的关系

Ⅲ.课时小结

Ⅳ.课后作业

关于教学过程的更多环节详情请下载后观看

七、板书设计

回顾与思考

一、1.圆的有关概念及性质;2.垂径定理及其逆定理;

3.圆心角、弧、弦之间关系定理;4.圆心角与圆周角的关系

二、课时小结

三、课后作业

教材