1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
七年级上册(2012年6月第3版)《2.7有理数的乘方》集体备课教案优质课下载
手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?积极思考、解决问题:
1根面条拉扣1次成2根,拉扣2次就成2×2根……每拉扣1次,面条数就增加1倍,拉扣6次.共有面条
2×2×2×2×2×2=64根.引入乘方运算的方法很多,用“拉面”引入,一是有趣,易接受;二是引导学生用“数学的眼光”观察分析生活中的实际问题.乘方的有关概念
试一试:
将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.
你还能举出类似的实例吗?
2×2×2×2×2×2记作26,读作“2的6次方”;
7×7×7可记作73;读作“7的3次方”.
一般地, 记作an,读作“a的n次方”.
求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.
26、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的6次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数.
思考:
1.(-4)3的底数是什么?指数是什么?幂是多少?
2.23和32的意义相同吗?
3.(-2)3、-23、-(-2)3分别表示什么意义?
4.(- EQ ﹨F(2,3) )4、- EQ ﹨F(24,3) 分别表示什么意义?
操作,记录对折的次数以及报纸的层数,并用算式表示它们的关系.
思考并举例.
形成并理解乘方、幂、指数、底数的概念,理解乘方运算和乘法运算的关系.
学生解答:
1.(-4)3的底数是-4,指数是3,幂是-64;
2.23和32的意义不同,23表示3个2相乘的积,32表示2个3相乘的积;
3.(-2)3、-23、-(-2)3分别表示的意义为:3个-2相乘的积、3个2相乘的积的相反数、3个-2相乘的积的相反数;
4.(- EQ ﹨F(2,3) )4、- EQ ﹨F(24,3) 分别表示的意义为:4个- EQ ﹨F(2,3) 相乘的积、4个2相乘的积的 EQ ﹨F(1,3) 的相反数.运用几个具有相同特征的算式,引出乘方的概念,同时揭示乘方和乘法的关系.
类似于乘法是求几个相同加数的和的运算,乘法是比加法高一级的运算,乘方是求几个相同因数的积的运算,乘方是比乘法高一级的运算.