1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
七年级下册(2012年11月第3版)《综合应用》精品教案优质课下载
⑵ x2 - 4=(x+2)(x-2);
⑶ x2 – 4 + 3x =(x+2)(x-2)+ 3x;
⑷ x2 + 4 - 4x =(x-2)2
⑸ am +bm +cm = m(a +b +c)
新课讲解:
我们来观察分析am +bm +cm = m(a +b +c),这个式子由左边到右边的变形是多项式的因式分解,这里m是多项式am +bm +cm的各项am 、bm 、cm都含有的因式,称为多项式各项的公因式。
确定多项式的公因式的方法, 对数字系数取各项系数的最大公约数, 各项都含有的字母取最低次幂的积作为多项式的公因式, 公因式可以是单项式 , 也可以是多项式, 如:ax+bx 中的公因式是x. 多项式 a(x+y)+b(x+y) 的公因式是 (x+y). 如果多项式的第一项系数是负的, 一般要先提出 “一” 号, 使括号内的首项系数变为正, 在提出 “一” 号时, 注意括号里的各项都要变号.
关键是确定多项式各项的公因式, 然后, 将多项式各项写成公因式与其相应的因式的积, 最后再提公因式, 把公因式写在括号外面, 然后再确定括号里的因式, 这个因式 ( 括号里的 ) 的项数与原多项式的项数相同, 如果项数不一致就漏项了.
完成“议一议”
如果多项式的各项含有公因式,那么就可以把这个公因式提出来,把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
例题5:把下列各式分解因式:
⑴ 6a3b – 9a2b2c﹢ ⑵ -2m3 + 8m2 - 12m
思路点拨:通过例5,教会学生如何找公因式,讲清要决定系数与字母,具体方法加以强调。在提出 “一” 号后, 括到括号里的各项都要变号.
解:⑴ 6a3b – 9a2b2c﹢
= 3a2b·2a - 3a2b·3bc
=??3a2b(2a - 3bc?)?
??完成“想一想”,要放手让学生去做
例题6:把下列各式分解因式:
⑴ - 3x2 + 18x - 27; ⑵ 18a2 - 50;
⑶ 2x2 y - 8xy + 8y。
练习:第91页第1、2、3、4、5题
小结:
提公因式法分解因式的关键是确定公因式,当公因式是隐含的时候,多项式要经过适当的变形;变形的过程要注意符号的相应改变.
我们已经学习了提公因式法和运用公式法,要注意先看能否用提公因式法,分解因式要进行到每个多项式因式都不能再分解为止。
教学素材: