1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《12.3互逆命题》新课标教案优质课下载
提问:
1.这两个命题的条件和结论分别是什么?
2.从结构上看,这两个命题有什么联系和区别?
揭示课题.积极思考,回答问题.问题情境的设计首先让学生回顾命题的条件和结论,为后续学习做准备,继而让学生观察一对命题的联系和区别,揭示出本节课的课题并引入“互逆命题”的概念.互逆命题的概念
1.举例:在我们学过的命题中,还有类似的一些例子吗?(同桌交流)
2.形成概念:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题是另一个命题的逆命题.同桌两人一组,将自己所举的例子说给对方听,并全班进行交流.
尝试归纳“互逆命题”的概念.通过举例便于让学生归纳出它们的条件和结论之间的共性来,从而水到渠成的归纳出互逆命题的概念.辨析
①直角都相等;
②π是无理数;
③如果a+b>0, 那么a>0,b>0;
④相等的角都是直角;
⑤如果a>0,b>0, 那么ab>0;
⑥如果一个数是无理数,那么这个数是π。
心得
把一个命题的条件和结论互换就得到它的逆命题,所以每个命题都有逆命题。
积极思考,相互讨论.通过辨析,发现两个命题不是互逆命题,但它们也有各自的逆命题,得出:“每个命题都有逆命题。”试一试
1.下列各组命题是否是互逆命题:
(1)“正方形的四个角都是直角”与“四个角都是直角的四边形是正方形”;
(2)“等于同一个角的两个角相等”与“如果两个角都等于同一个角,那么这两个角相等”;
(3)“对顶角相等”与“如果两个角相等,那么这两个角是对顶角”;
(4)“同位角相等,两直线平行”与“同位角不相等,两直线不平行”.
2.说出下列命题的逆命题,并与同学交流.
(1)如果a2=b2,那么a=b;
(2)如果两个角是对顶角,那么它们的平分线组成一个平角;
(3)末位数字是5的数,能被5整除;