1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级上册(2013年6月第3版)《作角平分线,过直线外一点作垂线》教案优质课下载
工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.
请同学们说明这样画角平分线的道理.提取信息,利用“SSS” 说明画角平分线的道理.
呈现工人师傅常常利用角尺平分一个角的情境,为探究新知提供“脚手架”,为“探索活动一”的证明提供思路.(二)探索活动一
1.说 请按序说出木工师傅的“操作”过程.
2.作与写 用直尺和圆规在图(2)中按序将木工师傅的“操作”过程作出来,并写出作法.
3.证 请证明你的作法是正确的.
4.用 用直尺和圆规完成以下作图:
(1)在图(3)中把∠MON四等分.
(2)在图(4)中作出平角∠AOB的平分线.
说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的
角平分线.积极思考,回答问题,整理成下列形式:
说:
作:
证明:在△MOC和△MOD中,
OC=OD,
OM=OM,
CM=DM,
∴△MOC≌△MOD(SSS),
∴∠COM=∠DOM,
即OM平分∠AOB.通过学生的“说”,进一步加强学生对工人师傅操作过程的理解,引发学生的数学思考,即将相关的几何信息转化为尺规的操作方法.
“说”与“作”对应,为学生“按序”尺规作图提供更为清晰的流程,这样设计使得学生易想、易作和易写,对突破难点,养成有条理的思考十分有益.
“用”就是为了巩固新知和发现新法.(三)探索活动二
1.观察思考.在图(2)作图的基础上,作过C、D的直线l(如图(5)),观察图中射线OM与直线l的位置关系,并说明理由.
2.问题变式.
你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB外一点P作AB的垂线PQ).