1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
1.在操作、比较中理解直角三角形全等的过程,并能用于解决实际问题.
2.经历探索直角三角形全等判定的过程,掌握数学方法,提高合情推理的能力.
3.培养几何推理意识,激发学生求知欲,感悟几何思维的内涵.
1.重点:
理解利用“斜边、直角边”来判定直角三角形全等的方法.
2.难点:
培养有条理的思考能力,正确使用“综合法”表达.
3.关键:
判定两个三角形全等时,要注意这两个三角形中已经具有一对角相等的条件,只需找到另外两个条件即可.
一、回顾交流,迁移拓展
【问题探究】
图1是两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形才能全等?
【教师活动】操作投影仪,提出“问题探究”,组织学生讨论.
【学生活动】小组讨论,发表意见:“由三角形全等条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.”
【媒体使用】投影显示“问题探究”.
【教学形式】分四人小组,合作、讨论.
【情境导入】如图2所示.
舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?
【思路点拨】(1)学生可以回答去量斜边和一个锐角,或直角边和一个锐角,但对问题(2)学生难以回答.此时,教师可以引导学生对工作人员提出的办法及结论进行思考,并验证它们的方法,从而展开对直角三角形特殊条件的探索.
【教师活动】操作投影仪,提出问题,引导学生思考、验证.
【学生活动】思考问题,探究原理.
做一做如课本图11.2─11:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?
【学生活动】画图分析,寻找规律.如下:
规律:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).
画一个Rt△A′B′C′,使B′C′=BC,AB=AB;
1. 画∠MC′N=90°。
2. 在射线C′M上取B′C′BC。
3. 以B′为圆心,AB为半径画弧,交射线C′N于点A′。
4. 连接A′B′。
二、范例点击,应用所学
【例4】如课本图11.2─12,AC⊥BC,BD⊥AD,AC=BD,求证BC=AD.
【思路点拨】欲证BC=AD,首先应寻找和这两条线段有关的三角形,这里有△ABD和△BAC,△ADO和△BCO,O为DB、AC的交点,经过条件的分析,△ABD和△BAC具备全等的条件.
【教师活动】引导学生共同参与分析例4.
证明:∵AC⊥BC,BD⊥BD,
∴∠C与∠D都是直角.
在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL).
∴BC=AD.
【学生活动】参与教师分析,提出自己的见解.
【评析】在证明两个直角三角形全等时,要防止学生使用“SSA”来证明.
【媒体使用】投影显示例4.
三、随堂练习,巩固深化
四、课堂总结,发展潜能
五、布置作业,专题突破
教学过程为表格式,关于教学过程的更多环节详情请下载后观看
把黑板分成三份,重复使用,左边部分板书直角三角形判定定理等有关概念,中间部分板书“探究”,右边部分板书例题.
本节课的教学,主要是让学生在回顾全等三角形判定(除了定义外,已经学了四种方法:SAS、ASA、AAS、SSS)的基础上,进一步研究特殊的三角形全等的判定方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.探索“HL”时,要求学生用文字语言、图形语言、符号语言来表达自己的所思所想,强调从情景中获得数学感悟,注重让学生经历观察、操作、推理的过程.不足的方面:第一,启发性、激趣性不足,导致学生的学习兴趣不易集中,课堂气氛不能很快达到高潮;第二,在学生的自主探究与合作交流中,时机控制不好,导致部分学生不能有所收获;第三,在评价学生表现时,不够及时,没有让他们获得成功的体验.这些在今后的教学中会争取改进.