1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级上册(2013年6月第3版)《3.2勾股定理的逆定理》教案优质课下载
经历探索一个三角形是直角三角形的条件的过程,发展合情推理能力,体会“形”与“数”的内在联系.
【学习重难点】
1.重点:探索并能归纳总结出直角三角形的判断条件,会运用直角三角形的判定条件判定一个三角形是否为直角三角形;
2.难点:了解勾股数的由来,并能用直角三角形的判定条件解决一些简单的实际问题.
【学习过程】
一、创设情境,揭示目标
问题1:同学们我们初一的时候学习了“平行线的性质”,你能简要用文字语言描述吗?
在平行线的性质学习之后我们学习了“平行线的判定”如“同位角相等,两直线平行”.
问题2:如果 EMBED Equation.DSMT4 ,那么 EMBED Equation.DSMT4 .如果 EMBED Equation.DSMT4 ,那么 EMBED Equation.DSMT4 .
这两组命题都是互逆命题,原命题成立时,逆命题有时成立,有时不成立.那么我们刚刚学过的勾股定理呢?
问题3:勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
在 EMBED Equation.DSMT4 中, EMBED Equation.DSMT4
EMBED Equation.DSMT4
反过来,如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形吗?如果三角形的三边长分别为 EMBED Equation.DSMT4 ,且 EMBED Equation.DSMT4 ,那么这个三角形是直角三角形吗?带着这个问题我们开始今天的学习.
二、引导探索,合作交流
1.求下列直角三角形中未知边的长.
2.判断下列由线段 EMBED Equation.DSMT4 为三边能否围成三角形?如果能围成三角形,那么所围成的三角形与上题中的三角形有什么关系?
(1) EMBED Equation.DSMT4 (2) EMBED Equation.DSMT4
3.三角形的三边长为 EMBED Equation.DSMT4 且 EMBED Equation.DSMT4 ,这个三角形和图(3)中三角形有什么关系?我们发现交换勾股定理逆命题是成立是的,我们把它称之为勾股定理的逆定理.
三、成果展示,意义建构
1.勾股定理的逆定理:如果三角形的三边长分别为 EMBED Equation.DSMT4 且 EMBED Equation.DSMT4 ,那么这个三角形是直角三角形.
2.象上面“3、4、5”“5、12、13”满足关系 EMBED Equation.DSMT4 的3个正整数 EMBED Equation.DSMT4 称为勾股数.你还能举出类似的例子吗?
四、数学运用,巩固提升
【例1】在 EMBED Equation.DSMT4 ,试判断 EMBED Equation.DSMT4 是否为直角三角形.
(1) EMBED Equation.DSMT4 (2) EMBED Equation.DSMT4