1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
苏科2011课标版《11.1反比例函数》集体备课教案优质课下载
学习难点:根据已知条件确定反比例函数的表达式.
学习过程:
一、情境创设:
用函数表达式表示下列问题中两个变量之间的关系:
1.计划修建一条长为500km的高速公路,完成该项目的天数y(天)随日完成量x(km)的变化而变化;
2.汽车从南京出发开往上海.汽车以80km/h的速度匀速行驶,行驶的路程s(km)随着汽车行驶的时间t (h)的变化而变化;
3.游泳池的容积为5000m3,向池内注水,注满水池所需时间t(h)随注水速度v(m3/h)的变化而变化;
4.正方形的面积y(cm2)随边长x(cm)的变化而变化;
5.实数m与n的积为200,m随n的变化而变化;
6.一盘蚊香总长为45cm,点燃时每小时缩短10cm,蚊香燃烧后的长度l(cm)随蚊香燃烧时间t(h)的变化而变化.
二、展示探究:
1.活动一:
(1):仔细观察上述函数,你会如何分类呢?请讲清楚分类的理由。
(2):它们都具有什么样的共同特征?请试一试再写出两个。
(3):你能用一个式子将它们全部表示出来吗?
(4):你能给这个新的函数取个名字吗?说说你的想法。
2.反比例函数的概念:
一般地,形如 的函数称为反比例函数,其中x是自变量,
y是x的函数,k是比例系数。反比例函数也可以写成 、 。
3.做一做:
例1.下列函数中,y是x的反比例函数吗?如果是反比例函数,那么比例系数k是多少?
(1) EMBED Equation.3 ; (2) EMBED Equation.3 ; (3) EMBED Equation.3 ; (4) EMBED Equation.3 ; (5) EMBED Equation.3 ;
(6) EMBED Equation.3 ; (7) EMBED Equation.3 (8) 。
例2. 下列的数表中分别给出了变量y与x之间的对应关系,其中表示是反比例函数是 ( )
例3. 已知y是x的反比例函数,当x =2时, y =6.