1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册(2013年12月第3版)《11.1反比例函数》集体备课教案优质课下载
【教学重难点】
重点:理解反比例函数的意义.
难点:根据已知条件确定反比例函数的表达式.
【预习导航】
1、下列所列举的两个变量之间的关系,是反比例函数关系的是( )
A. 斜边长为5的直角三角形中,两直角边之间的关系.
B.等腰三角形中,顶角与底角之间的关系.
C.圆的面积s与它的直径d之间的关系.
D. 面积20cm2的菱形,其中一条对角线长y与另一条对角线长x的关系.
2、下列关系式中的y是 x的反比例函数吗?如果是,比例系数k是多少?
(1)y = eq ﹨f(4,x) ; (2)y = - eq ﹨f(1,2x) ; (3)y = 1-x;
(4) xy = 1; (5)y = eq ﹨f(x,2) ; (6)y = ( eq ﹨r(2) -3)x-1
日期教师评价家长签名
【新知导学】
(一)自主合作:
1.尝试:汽车从南京出发开往上海(全程约300km),全程所用时间t(h),随速度v(km/的变化而变化.
(1)你能用含v的代数式表示t吗?
(2)利用(1)的关系式完成下表:
v/(km/h)60809****120t/h随着速度的变化,全程所用时间发生怎样的变化?
(3)时间t是速度v的函数吗?为什么?
(4)时间t是速度v的一次函数吗?是正比例函数吗?
2.思考:用函数关系式表示下列问题中两个变量之间的关系:
(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;
(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;
(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;