师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步苏科版九年级下册7.1 正切下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《7.1正切》集体备课教案优质课下载

本节课内容是有关“正切”的概念课,与以前学过的一次函数、二次函数及反比例函数有所不同,它揭示的是角度与数值(线段比值)的对应关系,且首次用符号来表示一种函数. 锐角三角函数是函数知识的推广和延伸,也是对直角三角形各元素之间关系的进一步探究,是三角学的起点.正切函数概念的建立是这节课的重点和难点,在形成概念和应用概念的过程中,学生通过自主学习、合作交流解决问题,积累数学活动经验,培养抽象、建模等数学思想.锐角三角函数与勾股定理一样都是解直角三角形很重要的知识内容之一,它揭示了直角三角形中边与角之间的关系,被广泛应用于测量、建筑、工程技术和物理学中,主要是计算距离、高度和角度.正确认识锐角三角函数,是学好解直角三角形的关键,也将为以后继续学习三角函数奠定必要的基础.

对于渗透数学思想方法而言,本节课在引入概念、计算化简、解决实际问题时,都要求学生通过画图帮助分析,由图形找出直角三角形中边、角的关系,加深对锐角三角函数概念的理解和应用,是诠释数形结合的理想材料.而数与形的结合不仅是数学自身发展的需要,也是辅助概念性教学、增强元认知策略的需要,对加深理解数学知识、发展数学能力有不可替代的作用.

二、教学目标设置

1.知识与技能

(1)理解正切的概念;

(2)掌握正切的表示方法,并能准确求出一个角的正切值.

2.过程与方法

让学生经历多次猜想、验证,在不断的否定与肯定的过程中,探究如何描述坡面的倾斜程度,培养学生思维的批判性、深刻性.

3.情感、态度与价值观

经历正切概念的探索过程,体会从生活中的问题抽象出数学模型的建模思想、数形结合的重要性、体验角度和数值一一对应的函数思想,培养学生的符号意识.体会正切在生活中的应用.

教学重点:正切概念的探究

教学难点:

1.在正切概念的探究过程中,如何想到利用直角三角形的对边与邻边的比来描述坡面的倾斜程度以及把比值和角度联系起来;

2.理解正切的概念.

三、学生学情分析

在此之前学生已经学习过函数的定义和相似三角形,具备了学习锐角三角函数的知识基础;九年级上学期的学生已经具有一定的空间观念、想象力、几何语言表达能力以及逻辑推理能力.学生已有的知识、经验、能力和思想方法为新的认知活动提供了必要的基础和条件.

在研究如何描述坡面的倾斜程度的过程中,学生对所构建的直角三角形的单一元素的研究中得出:直角三角形的锐角可以用来描述坡面的倾斜程度,而三边中的任何一条边都不可以.学生可能会想到两条边而如何又会想到两边的比值呢?这种变换思考问题的角度对学生来说还是有困难的.另外,学生虽然学习了一些函数的知识,但是学生对角度与数值之间的对应还是第一次接触,所以对锐角三角函数概念的理解仍显抽象和困难.

基于以上原因,我将本节课的教学难点确定为:1.在正切概念的探究过程中,如何想到利用直角三角形的对边与邻边的比来描述坡面的倾斜程度以及把比值和角度联系起来;2.理解正切的概念.

突破难点的策略:既然坡角可以用来描述坡面的倾斜程度,我们就想办法利用这个结论.两个锐角一样大的直角三角形(画出图形,结合图形说明)对应的坡面的倾斜程度是一样的,而这两个直角三角形相似,相似三角形的对应边成比例,这样就沟通了直角三角形中的边、角关系,从而变换角度继续探讨:能不能利用直角三角形两边的比来描述坡面的倾斜程度呢?

四、教学策略分析

依据教学内容、教学目标以及学情分析,本节课的教学策略采用启发式与自主探究相结合的模式.教师的教法突出探究活动的组织设计与方法的引导, 学生的学法突出自主、合作、探究的学习理念.整节课的探究活动采用问题引导下的自主探究,在探究中发现并掌握相关知识.具体做法如下:

以生活中的实际场景为背景创设情境,设计问题1:怎样描述坡面的倾斜程度呢?因为学生对亲身经历的爬山坡有体验,所以对此展开探究.设计问题2:爬这两段山坡会有什么不同的感受?哪个坡面更陡?你是如何判断的?利用坡角的大小作出判断,这是绝大多数学生首先想到的办法,这个机会可以留给程度较差的学生,结合构建的图形口头叙述即可.而对于边的探讨,不少学生想不到,要引导学生将实际问题抽象成数学问题,构建直角三角形,利用构建的直角三角形通过举反例不断地否定.这里不光让学生体会建模的思想,还要让学生知道:在数学中说明一个结论不成立要举反例.从而得出从单一的元素考虑:锐角可以描述坡面的倾斜程度,而三边中的任何一条边都不可以.既然只用一边不行,我们综合考虑两条边.引出问题3:如何改进呢?此时给学生留时间思考、交流.突然变换角度思考问题,大多数学生都很茫然,只有少数学生有不太清晰的思路,这部分学生可以在老师的适当帮助下独立解决问题.对于多数学生,这时教师不只是引导,还要做必要的讲解.

学生在得到可以用直角三角形锐角的对边与邻边的比来描述坡面的倾斜程度的同时,还得到:锐角和锐角的对边与邻边的比的关系:锐角固定,锐角的对边与邻边的比也固定.此时学生可能会想到问题4:如果角度变化了呢?这个比值会怎样呢?对于角度和比值之间的一一对应的函数关系,多数学生理解起来还存在思维障碍.这时教师通过几何画板的动态演示,从运动的角度直观化教学,使∠A的对边与∠A的邻边的比和∠A这两个变量之间的一一对应关系形象化,从而让学生深刻理解了正切就是反应直角三角形中锐角的对边与邻边的比值和∠A之间的一种函数.此处教师用“几何画板” 的演示起到了媒介特殊的作用----突破难点.同时“几何画板”的运用,为课堂教学注入了生命的活力,进一步增强了学生学习的积极性和求知欲望.

整个教学过程大致可以分为“提出问题---探索问题---解决问题” 三个阶段.问题解决的过程,正是学生情感态度、价值观及学习能力全面发展的过程.在这样的课堂上,学生不仅学会了有条理地表述自己的观点想法,还学会了相互接纳、赞赏与互助,并不断对自己和别人的想法进行批判和反思.通过学生间的多向交流,可以使他们从多角度看到解决问题的途径.学生探索数学新知的学习过程是一个以学生已有的知识和经验为基础的主动构建的过程,要靠学生在活动中去领会.所以我将学习知识的过程和探究知识的过程统一到“尝试---探究” 的全过程中来.尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中交流,在“探究”中创新. 本节课就是这样依据知识的发生发展过程和学生的思维规律,围绕教学重点设计问题,引导学生的数学思维活动的.

五、教与学互动设计