师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步苏科版九年级下册5.3 用待定系数法确定二次函数表达式下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

九年级下册(2014年11月第1版)《5.3用待定系数法确定二次函数表达式》优质课教案下载

教学过程

一、合作交流 例题精析

1、一般地,形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。

例1 ?已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。

小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。

2、二次函数y=ax2+bx+c用配方法可化成:y=a(x+h)2+k,顶点是(-h,k)。配方: y=ax2+bx+c=__________________=___________________=__________________=a(x+)2+。对称轴是x=-,顶点坐标是(-,), h=-,k=, 所以,我们把_____________叫做二次函数的顶点式。

例2 ?已知二次函数的图象经过原点,且当x=1时,y有最小值-1, 求这个二次函数的解析式。

小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。请大家试一试,比较它们的优劣。

3、一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x轴的两个交点坐标时,可选用二次函数的交点式:y=a(x-x1)(x-x2),其中x1 ,x2 为两交点的横坐标。

例3 ?已知二次函数的图象与x轴交点的横坐标分别是x1=-3,x2=1,且与y轴交点为(0,-3),求这个二次函数解析式。

想一想:还有其它方法吗?

二、应用迁移 巩固提高

1、根据下列条件求二次函数解析式

(1)已知一个二次函数的图象经过了点A(0,-1),B(1,0),C(-1,2);

(2)已知抛物线顶点P(-1,-8),且过点A(0,-6);

(3)二次函数图象经过点A(-1,0),B(3,0),C(4,10);

(4)已知二次函数的图象经过点(4,-3),并且当x=3时有最大值4;

(5)已知二次函数的图象经过一次函数y=-—x+3的图象与x轴、y轴的交点,且过(1,1);

(6)已知抛物线顶点(1,16),且抛物线与x轴的两交点间的距离为8;

2、如图所示,已知抛物线的对称轴是直线x=3,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(8,0)(0,4),求这个抛物线的解析式。

三、总结反思 突破重点

1、二次函数解析式常用的有三种形式:

(1)一般式:_______________ ?(a≠0)

(2)顶点式:_______________ ?(a≠0)

(3)交点式:_______________ ?(a≠0)