1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《小结与思考》优质课教案下载
【教学难点】三角形相似中基本图形的综合应用
【知识回顾】
1.已知线段a=4,b=9,线段x是a,b的比例中项,则x等于( )
A.﹣6 B.6或﹣6 C.6 D.36
2.已知C是AB的黄金分割点(AC<BC),若AB=4cm,则AC的长为( )
A.(6﹣2 )cm B.(2 ﹣2)cmC.( ﹣1)cm D.(3﹣ )
3.如图,在△ABC中,点D、E分别在AB、AC边上,且DE∥BC,若AD:DB=3:1,AE=6,则AC等于( )
A.3 B.4 C.6 D.8
4.如图,在△ABC中,点D、E分别在AB,AC上,下列条件中不能判断△ABC∽△AED的是( )
A.∠AED=∠B B. = C.∠ADE=∠C D. =
5.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则DE:BC为( )
A.2:3 B.2:1 C.4:9 D.5:4
【合作探究】
问题1:如图,在△ABC中,AB=6,BC=10,AC=9,AD=2
(1)若DE∥BC,则AE= ;
(2)若E为AC上一点,当AE= 时,△ADE与△ABC相似.
思考:过点D作一条直线与△ABC的一边相交,所截得的三角形与原三角形相似,
这样的直线有几条?与点D的位置有关吗?
问题2:1. 如图1,在等腰Rt△ABC中,AC=BC,CD⊥AB于D,则图中三个三角形有何关系?如图2,正方形ABCD中,BE⊥AF,则AF与BE有何数量关系?试说明理由.
2. (1)如图1,在Rt△ABC中,∠ABC=90°,BD⊥AC于D,则图中三个三角形有何关系?
(2)如图2,在矩形ABCD中,BE⊥AC于D,AB=3,AD=4,则BE与AC有何数量关系?试说明理由.
①如图3,在矩形ABCD中,若点E为AD中点,则AF:FC= ;S△AEF:S△BCF= ;
S△ABF:S四边形CDEF= .
②如图3,在矩形ABCD中,若点E为AD中点,BE⊥AC于D,连接BD
交AC于点O,连接DF. 1)△EDF∽△EBD吗?为什么?