1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《代入消元法解二元一次方程组》精品教案优质课下载
2、初步体会二元一次方程组的基本思想---“消元”
过程与方法:通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:
用代入消元法解二元一次方程组。
教学难点:
理解消元思想和选择适当的消元方法解二元一次方程组。
教学过程
创设情境,激趣导入
老师和李瑞珠是好朋友,她总想知道老师的年龄老师说 :“我的年龄是李瑞珠的2倍还多3岁”,李瑞珠想了想说:“老师和我的年龄和为45岁”,请同学们算一算老师,李瑞珠的年龄。
我们已经看到,直接设两个未知数,可以列方程组 表示本章引言中问题的数量关系。如果只设一个未知数,这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]x+(2x+3)=45。
观察
上面的二元一次方程组和一元一次方程有什么关系?[2]
[2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。这正是下面要讨论的内容。
(二)新课教学
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。[3]
[3]通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。
归纳:
上面的解法,是由二元一次方程组中的一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法[4]
[4]这是对代入法的基本步骤的概括,代入法通过“把一个方程(必要时先做适当变形)代入另一个方程”进行等量替换,用含一个未知数的式子表示另一个未知数,从而实现消元。
(三)例题教学
例1 用代入法解方程组
分析:方程①中x的系数是1,用含y的式子表示x,比较简便。
解:由①,得x=y+3。 ③